Progress 02/15/21 to 02/14/22
Outputs Target Audience: The target audience for this project during this reporting period includes researchers in the areas of autonomous systems, UAVs, computer vision, control systems, and livestock systems. The target audience also includes cattle producers Changes/Problems:
Nothing Reported
What opportunities for training and professional development has the project provided?This project has provided research training for 7 graduate students (5 Ph.D. and 2 M.S. student) and 3 undergraduate students. This project has provided valuable interdisciplinary research experience for these students. Four Ph.D. students who worked on this project have graduated; these students currently hold a variety of positions in industry, research laboratories, and academic institutions. Two M.S. students who worked on this project have graduated. How have the results been disseminated to communities of interest?Results from this project have published and/or presented at the IEEE Conference on Decision and Control, the ASABE Annual International Meeting, and the American Control Conference. Results from this project were also presented at the National Robotics Initiative PI Meetings. Results from this project have also been published in the IEEE Transactions on Control System Technology, Applied Animal Behaviors, and Journal of the ASABE. This project has been featured in the following 4 popular press outlets: BBC News Article. "The Drones Watching Over Cattle Where Cowboys Cannot Reach". By Daliah Singer. January 14, 2021. https://www.bbc.com/future/bespoke/follow-the-food/drones-finding-cattle- where-cowboys-cannot-reach.html CNET Documentary and News Article. "Drones on the farm: Using facial recognition to keep cows healthy". By Molly Price. August 22, 2019. https://www.cnet.com/news/drones-and-facial- recognition-could-help-keep-cows-healthy/ WKYT News Report. "UK Researchers Using Drones to Solve Billion Dollar Cattle Industry Prob- lem". By Adam Burniston. January 29, 2020. https://www.wkyt.com/content/news/UK-researchers- working-to-solve-billion-dollar-cattle-industry-problem-with-drones-567397761.html Spectrum News 1 Report. "Drone Research at The University of Kentucky Could Rescue Cattle Industry". By Crystal Sicard. March 8, 2020. https://spectrumnews1.com/ky/lexington/news/2020/03/08/drones-save-cows In addition, results from this project were presented at a variety of extension and outreach activities. Please see below: Jackson, J.J. Innovations in Fencing Technology-UAS. Fencing School-Frankfort, KY 11/11/2021. 30 Direct Contacts. Multi-County Jackson, J.J. Innovations in Fencing Technology-UAS. Fencing School-Grand Rivers, KY 11/9/2021. 30 Direct Contacts. Multi-County Jackson, J.J. Cattle and Drone interaction. Beef Bash-Lexington. 10/14/2021. 20 Direct Contacts State Wide Jackson, J.J. Drones for Cattle and Fence Line Monitoring. Taylor Co Field day. 9/16/2021. ~100 Direct Contacts. Local/County Meeting/Field Day Jackson, J.J. Drones for Cattle and Fence Line monitoring Drone Field Day-Hardin and surrounding Counties. 8/3/2021 50 Direct Contacts Multi-County Jackson, J.J. Innovations in Fencing Technology-UAS. Fencing School-Owensboro. 5/13/2021. 20 Direct Contacts. Multi-County Jackson, J.J. Innovations in Fencing Technology-UAS. Fencing School-Christian County. 5/11/2021. 20 Direct Contacts. Multi-County Jackson, J.J. New Technology in Beef Production. Nelson County Junior Cattlemen-Virtual. 2/18/2021. 7 Direct Contacts. Local/County Meeting/Field Day What do you plan to do during the next reporting period to accomplish the goals?
Nothing Reported
Impacts What was accomplished under these goals?
During this reporting period, we made 4 major accomplishments. These accomplishments are as follows: Cow Detection and Observer UAV. During this reporting period, developed a computer vision method for detecting and tracking a target (e.g., cow) in the wild (e.g., in pasture). In addition, this algorithm was implemented in an embedded system onboard the observer UAV. Finally, we tested and evaluated the detection and tracking capability in outdoor experiments where the observer UAV detected and tracked an imaging target (in this case a human). The tracking performance was evaluated using GPS measurements of the target's location as the ground truth. This evaluation demonstrated the observer UAV system could successfully detect and track a target. Relative-to-Target UAV Formation Control Method and Experiments. We implemented a variety of improvement to our new relative-to-target (R2T) formation control algorithm that positions UAVs in a desired formation around a cow to obtain images simultaneously from different angles. Notably, we integrated the real-time imaging target position estimates that are obtained from the observer UAV (discussed above) in the overall R2T control algorithm. Furthermore, we tested and evaluated the integrated system. In these evaluation experiments, the observer UAV detected and tracked an imaging target, that is, the observer UAV estimated the position and velocity of the imaging target. Then, these position and velocity estimates were transmitted in real time to the worker UAVs so that the worker UAVs could maintain a formation around the imaging target and take images from multiple angles. These experiments were completely autonomous and demonstrated successful implementation of the overall system. Three-Dimensional Scan of Cattle from UAVs. During the previous reporting period, we developed a high-fidelity LiDAR-based scanning system. This system allowed us to perform 3D scans to evaluate the accuracy of volume estimates obtained from the 3D point clouds generated from 2D images from UAVs. During the current reporting period, LiDAR-based 3D scans of cow statues were captured and compared with UAV-based 3D models derived from photogrammetry. Results showed that most UAV-based image sets produced estimated volumes within 5% of the LiDAR measurement and the best performing UAV-based image sets were within 2%. These findings demonstrate that low-cost UAVs can be used to produce accurate 3D models of cattle when coupled with photogrammetry software. Evaluate Cattle Response to UAVs. We conducted experiments to evaluate the potential stress induced by UAVs flying near cattle. Heifer heart rate and movement rate were measured preflight and during UAV flight in beats per minute and meters per second at 1 Hz to measure physiological and behavioral response respectively. In this final reporting period, we had sorted the cattle by disposition and conducted UAVs flights near the calm and easily excitable cattle. There was no significant difference between the calm and easily excitable cattle's stress response to UAV flights. Additionally, UAV flights near cattle was conducted with large and small UAVs at 15 to 30 ft above ground level. The studies demonstrated that beef heifers were not stressed by the size of the UAV.
Publications
- Type:
Theses/Dissertations
Status:
Awaiting Publication
Year Published:
2022
Citation:
Z. S. Lippay. Formation Control with Bounded Controls and Collision Avoidance: Theory and Application to Quadrotor Autonomous Unmanned Air Vehicles. PhD Dissertation. University of Kentucky. 2022.
- Type:
Theses/Dissertations
Status:
Published
Year Published:
2022
Citation:
G. Abdulai. The Response of Beef Cattle to Disturbances from Unmanned Aerial Vehicles. PhD Dissertation. University of Kentucky. 2022. https://uknowledge.uky.edu/bae_etds/87
- Type:
Journal Articles
Status:
Published
Year Published:
2022
Citation:
Abdulai, G.A., Sama, M.P., Jackson, J.J. 2022. Evaluating Two Low-Cost GPS Receivers for Accuracy and Eventual Use in Pasture Cattle Research. Journal of the ASABE. Vol. 65(3): 567-572. https://doi.org/10.13031/ja.14518
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2021
Citation:
Abdulai, G.A., Sama, M.P., Jackson, J.J. 2021. A Preliminary Study of the Effect of Temperament on Beef Cattle Response to Unmanned Aerial Vehicle (UAV) Flights. ASABE Annual International Meeting.
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2020
Citation:
Pampolini, L.F., Sama, M.P., Jackson, J.J. Yang, R., Hoagg, J.B. 2020. Estimating Cattle Size Using Unmanned Aircraft Systems and Photogrammetry. ASABE Annual International Meeting. Virtual.
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2020
Citation:
Abdulai, G.A., Li, J., Herrin, D., Hoagg, J.B., Montross, M.D., Sama, M.P., Jackson, J.J. 2020. Physiological Response of Beef Cattle to Noise from Unmanned Aerial Vehicles (UAVs). ASABE Annual International Meeting. Virtual.
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2020
Citation:
Ladino, K.S., Sama, M.P., Abdulai, G.A., Jackson, J.J. 2020. Static GNSS Accuracy Testing on an Unmanned Aircraft System. ASABE Annual International Meeting. Virtual.
|
Progress 02/15/18 to 02/14/22
Outputs Target Audience: The target audience for this project during this reporting period includes researchers in the areas of autonomous systems, UAVs, computer vision, control systems, and livestock systems. The target audience also includes cattle producers. Changes/Problems:
Nothing Reported
What opportunities for training and professional development has the project provided? This project has provided research training for 7 graduate students (5 Ph.D. and 2 M.S. student) and 3 undergraduate students. This project has provided valuable interdisciplinary research experience for these students. Four Ph.D. students who worked on this project have graduated; these students currently hold a variety of positions in industry, research laboratories, and academic institutions. Two M.S. students who worked on this project have graduated. How have the results been disseminated to communities of interest? Results from this project have published and/or presented at the IEEE Conference on Decision and Control, the ASABE Annual International Meeting, and the American Control Conference. Results from this project were also presented at the National Robotics Initiative PI Meetings. Results from this project have also been published the IEEE Transactions on Control System Technology, Applied Animal Behaviors, and Journal of the ASABE. This project has been featured in the following 4 popular press outlets: BBC News Article. "The Drones Watching Over Cattle Where Cowboys Cannot Reach". By Daliah Singer. January 14, 2021. https://www.bbc.com/future/bespoke/follow-the-food/drones-finding-cattle- where-cowboys-cannot-reach.html CNET Documentary and News Article. "Drones on the farm: Using facial recognition to keep cows healthy". By Molly Price. August 22, 2019. https://www.cnet.com/news/drones-and-facial- recognition-could-help-keep-cows-healthy/ WKYT News Report. "UK Researchers Using Drones to Solve Billion Dollar Cattle Industry Prob- lem". By Adam Burniston. January 29, 2020. https://www.wkyt.com/content/news/UK-researchers- working-to-solve-billion-dollar-cattle-industry-problem-with-drones-567397761.html Spectrum News 1 Report. "Drone Research at The University of Kentucky Could Rescue Cattle Industry". By Crystal Sicard. March 8, 2020. https://spectrumnews1.com/ky/lexington/news/2020/03/08/drones-save-cows In addition, results from this project were presented at a variety of extension and outreach activities. See Other Products. What do you plan to do during the next reporting period to accomplish the goals?
Nothing Reported
Impacts What was accomplished under these goals?
Year 1 major accomplishments: Cattle Response to UAVs. We conducted experiments to evaluate the potential stress induced by UAVs flying near cattle. A total of 20 dairy heifers (2 heifers per 2 acre pasture) were subjected to 3 different treatments of UAV flight: i) 18 m AGL grid over field (pasture monitoring); ii) 7.6-9.1 m AGL grid over field (lower altitude); and iii) 7.6-9.1 m AGL circular flight around cow. For each trial, we conducted 5-min flights per pasture with an average speed of 2.3 m/s. The animals' behavioral response were measured with Land Air Sea® trackers, and the animals' heart rate response were measured with Polar® H10 and Polar® Equine electrode set. These experiments demonstrated no significant behavioral changes. Moreover, the heart rate during flight was comparable to the heart rate before the flight. 3D Scan of Cattle from UAVs. We conducted experiments to determine optimal flight paths for 3 UAVs to simultaneously image a cow. We collected 108 images along 9 flight paths. Flight paths were programmed into the UAV autopilot and the flight was repeated 3 times. 3D models were generated using Pix4Dmapper. The experiments and analyses demonstrate that 3D models degrade if the number of images is reduced. Certain combinations resulted in entire sets of images being dropped from analysis because of an inadequate number of tie points. Generative 3D Cow Model. We designed a generative 3D cow model that will be used to estimate cow volume and weight. The generative cow model is able to generate a variety of cow shapes and poses with relatively few tuning parameters. UAV Formation Control. We developed a new relative-to-target (R2T) formation control algorithm that positions UAVs in a desired formation around a cow to obtain images simultaneously from different angles. This R2T formation control method allows the formation to rotate as the imagining target (e.g., cow) changes its orientation. We have conducted indoor flight tests to validate. Year 2 major accomplishments: Facial Imaging. We developed a new facial recognition algorithm for cows. Compared to existing methods, this new algorithm significantly improves the recognition accuracy by adopting a recently developed advanced deep-learning based framework. 3D Scan of Cattle from UAVs. The image sets (which were collected around two life-sized cow statutes) were subdivided to represent flight paths. These flight paths varied in radius and elevation above ground level relative to the cow. The images were processed to generate 3D point clouds, which, in turn, were used to estimate the cow's volume. Analysis revealed an optimal set of flight paths as well as several paths that produce inaccurate 3D models. Generative 3D Cow Model. We built a 48-camera imaging setup, and we are in the process of collecting a 3D cow image data set under field conditions. The existing dataset has been used successfully to create 3D cattle models. However, we plan to capture many more cattle images in the coming months to create a real 3D cattle database, which can be used to build a regression model for cattle. UAV Formation Control. We improved R2T formation control algorithm that positions UAVs in a desired formation around a cow to obtain images simultaneously from different angles. This R2T method allows the formation to rotate as the imagining target (e.g., cow) changes its orientation. We conducted extensive indoor and outdoor flight tests. Cattle Response to UAVs. We conducted experiments to evaluate the potential stress induced by UAVs flying near cattle. Two UAV flight treatments used circular and grid flight pattern. At the end of the study, the mean heifer preflight heart rate was 57 - 80 bpm, and UAV flight heart rate was 58 - 82 bpm. The mean heifer preflight movement rate was 0.00 - 0.14 mps, and UAV flight movement rate of 0.00 - 0.07 mps. The studies demonstrated that beef heifers were not stressed by UAV flights as evidence in no significant change in heart rate and movement rate during UAV flights. The use of UAVs as a cattle health monitoring tool does not induce stress in beef cattle raised on pasture. Year 3 major accomplishments: Facial Imaging. We continued to refine the new facial recognition algorithm for cows. Compared to existing methods, this new algorithm improves the recognition accuracy by adopting a recently developed advanced deep-learning based framework. 3D Scan of Cattle from UAVs. We developed a high-fidelity LiDAR-based scanning system. This system allowed us to perform 3D scans to evaluate the accuracy of volume estimates obtained from the 3D point clouds generated from 2D images from UAVs. UAV Formation Control. We developed and implemented novel collision avoidance safety filters. These filters adjust the desired UAV controls to enforce hard safety constraints, namely, actuator amplitude and rate constraints, UAV velocity and acceleration constraints, and no-collision constraints. We conducted outdoor flight tests to validate these new safety filters. We also developed new middle loop UAV control methods to improve flight performance. Cattle Response to UAVs. We conducted experiments to evaluate the potential stress induced by UAVs flying near cattle. We had multiple UAVs fly near the cattle. Heifer heart rate and movement rate were measured preflight and during UAV flight in beats per minute and meters per second at 1 Hz to measure physiological and behavioral response respectively. The studies demonstrated that beef heifers were not stressed by multiple UAV flights as evidence in no significant change in heart rate and movement rate during UAV flights. Year 4 major accomplishments: Cow Detection and Observer UAV. We developed a computer vision method for detecting and tracking a target (e.g., cow) in the wild (e.g., in pasture). This algorithm was implemented in an embedded system onboard the observer UAV. We tested and evaluated the detection and tracking capability in outdoor experiments where the observer UAV detected and tracked an imaging target. The tracking performance was evaluated using GPS measurements of the target's location as the ground truth. This evaluation demonstrated the observer UAV system could successfully detect and track a target. UAV Formation Control. We integrated the real-time imaging target position estimates that are obtained from the observer UAV (discussed above) in the overall R2T control algorithm. We tested and evaluated the integrated system. These experiments were completely autonomous and demonstrated successful implementation of the overall system. 3D Scan of Cattle from UAVs. We performed 3D scans to evaluate the accuracy of volume estimates obtained from the 3D point clouds generated from 2D images from UAVs. During the current reporting period, LiDAR-based 3D scans of cow statues were captured and compared with UAV-based 3D models derived from photogrammetry. Results showed that most UAV-based image sets produced estimated volumes within 5% of the LiDAR measurement and the best performing UAV-based image sets were within 2%. These findings demonstrate that low-cost UAVs can be used to produce accurate 3D models of cattle when coupled with photogrammetry software. Cattle Response to UAVs. We conducted experiments to evaluate the potential stress induced by UAVs flying near cattle. Heifer heart rate and movement rate were measured preflight and during UAV flight in beats per minute and meters per second at 1 Hz to measure physiological and behavioral response respectively. We sorted the cattle by disposition and conducted UAVs flights near the calm and easily excitable cattle. There was no significant difference between the calm and easily excitable cattle's stress response to UAV flights. The studies also demonstrated that beef heifers were not stressed by the size of the UAV.
Publications
- Type:
Theses/Dissertations
Status:
Submitted
Year Published:
2022
Citation:
Z. S. Lippay. Formation Control with Bounded Controls and Collision Avoidance: Theory and Application to Quadrotor Autonomous Unmanned Air Vehicles. PhD Dissertation. University of Kentucky. 2022.
- Type:
Theses/Dissertations
Status:
Published
Year Published:
2020
Citation:
L. F. Pampolini. An Assessment of 2D and 3D Spatial Accuracy of Photogrammetry for Livestock Health Monitoring. MS Thesis. University of Kentucky. 2020.
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2019
Citation:
Z. S. Lippay and J. B. Hoagg. "Formation Control in a Rotating Coordinate Frame for Agents with Double Integrator Dynamics." Proc. Conf. Dec. Contr., pp. 82368241, Nice, France, December 2019. DOI: 10.1109/CDC40024.2019.9029757
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2020
Citation:
Z. S. Lippay and J. B. Hoagg. Leader-following formation control with time-varying formations and bounded controls for agents with double integrator dynamics, Proc. Amer. Contr. Conf., pp. 871876, Denver, CO, July 2020. DOI: 10.23919/ACC45564.2020.9147567
- Type:
Journal Articles
Status:
Published
Year Published:
2021
Citation:
Z. S. Lippay and J. B. Hoagg. Formation control with time-varying formations, bounded controls, and collision avoidance, IEEE Transactions on Control System Technology, 2021. DOI: 10.1109/ TCST.2021.3062824
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2019
Citation:
Abdulai, G., Sama, M., Jackson, J.J. 2019, Low cost GPS receiver accuracy for cattle monitoring. ASABE Annual International Meeting, Boston, MA, July 7-10
- Type:
Journal Articles
Status:
Published
Year Published:
2021
Citation:
Abdulai, G., Sama, M., Jackson, J.J. 2021. A Preliminary Study of the Physiological and Behavioral Response of Beef Cattle to Unmanned Aerial Vehicles (UAVs). Applied Animal Behaviour Science, 241.
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2020
Citation:
Pampolini, L.F., Sama, M.P., Jackson, J.J. Yang, R., Hoagg, J.B. 2020. Estimating Cattle Size Using Unmanned Aircraft Systems and Photogrammetry. ASABE Annual International Meeting. Virtual.
- Type:
Other
Status:
Published
Year Published:
2021
Citation:
Jackson, J.J., Ladino, C., Abdulai, G. 2021. AEN-160 UAV Decision Aid for Estimating the Cost of Using a Drone in Production Agriculture. University of Kentucky Agricultural Communications Service. http://www2.ca.uky.edu/agcomm/pubs/AEN/AEN160/AEN160.pdf
- Type:
Other
Status:
Published
Year Published:
2021
Citation:
Jackson, J.J. 2021. AEN-159 Using Drones to Monitor Fence Lines. University of Kentucky Agricultural Communications Service. http://www2.ca.uky.edu/agcomm/pubs/AEN/AEN159/AEN159.pdf
- Type:
Theses/Dissertations
Status:
Published
Year Published:
2022
Citation:
G. Abdulai. The Response of Beef Cattle to Disturbances from Unmanned Aerial Vehicles. PhD Dissertation. University of Kentucky. 2022. https://uknowledge.uky.edu/bae_etds/87
- Type:
Journal Articles
Status:
Published
Year Published:
2022
Citation:
Abdulai, G.A., Sama, M.P., Jackson, J.J. 2022. Evaluating Two Low-Cost GPS Receivers for Accuracy and Eventual Use in Pasture Cattle Research. Journal of the ASABE. Vol. 65(3): 567-572. https://doi.org/10.13031/ja.14518
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2021
Citation:
Abdulai, G.A., Sama, M.P., Jackson, J.J. 2021. A Preliminary Study of the Effect of Temperament on Beef Cattle Response to Unmanned Aerial Vehicle (UAV) Flights. ASABE Annual International Meeting.
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2020
Citation:
Abdulai, G.A., Li, J., Herrin, D., Hoagg, J.B., Montross, M.D., Sama, M.P., Jackson, J.J. 2020. Physiological Response of Beef Cattle to Noise from Unmanned Aerial Vehicles (UAVs). ASABE Annual International Meeting. Virtual.
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2020
Citation:
Ladino, K.S., Sama, M.P., Abdulai, G.A., Jackson, J.J. 2020. Static GNSS Accuracy Testing on an Unmanned Aircraft System. ASABE Annual International Meeting. Virtual.
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2021
Citation:
S. Chen, S. Wang, X. Zuo and R. Yang, "Angus Cattle Recognition Using Deep Learning," 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 4169-4175, doi: 10.1109/ICPR48806.2021.9412073.
- Type:
Conference Papers and Presentations
Status:
Other
Year Published:
2020
Citation:
J. B. Hoagg, J. J. Jackson, M. P. Sama, and R. Yang. NRI: INT: Autonomous unmanned aerial robots for livestock health monitoring, 2020 National Robotics Initiative Principal Investigators Meeting, Arlington, VA, February 2020.
- Type:
Conference Papers and Presentations
Status:
Other
Year Published:
2019
Citation:
J. B. Hoagg!, J. J. Jackson, M. P. Sama, and R. Yang. NRI: INT: Autonomous unmanned aerial robots for livestock health monitoring, 2018 National Robotics Initiative Principal Investigators Meeting, Crystal City, VA, October 2018.
- Type:
Conference Papers and Presentations
Status:
Other
Year Published:
2018
Citation:
J. B. Hoagg, J. J. Jackson, M. P. Sama, and R. Yang. Autonomous unmanned aerial robots for livestock health monitoring, 2017 National Robotics Initiative Principal Investigators Meeting, Washington, DC, November 2017.
|
Progress 02/15/20 to 02/14/21
Outputs Target Audience: The target audience for this project during this reporting period includes researchers in the areas of autonomous systems, UAVs, computer vision, control systems, and livestock systems. The target audience also includes cattle producers. Changes/Problems:
Nothing Reported
What opportunities for training and professional development has the project provided?This project has provided research training for 6 graduate students (5 Ph.D. and 1 M.S. student) and 3 undergraduate students. This project has provided valuable interdisciplinary research experience for these students. One Ph.D. student from this project graduate in the fall of 2019, and she is currently in a postdoctoral research position. One M.S. student from this project graduated in the spring of 2020, and he is currently in an industry position. The research conducted in this project will constitute a significant portion of the Ph.D. dissertations for the 4 other graduate students. How have the results been disseminated to communities of interest?Results from this project have published and/or presented at the 2019 IEEE Conference on Decision and Control,the 2019 ASABE Annual International Meeting, and the 2020 American Control Conference. Results from this project were also presented at the National Robotics Initiative PI Meetings. Results from this project have also been published theIEEE Transactions on Control System Technology, and inApplied Animal Behaviors. This project has been featured in the following 4 popular press outlets: 1. BBC News Article."The Drones Watching Over Cattle Where Cowboys Cannot Reach". By Daliah Singer. January 14, 2021.https://www.bbc.com/future/bespoke/follow-the-food/drones-finding-cattle- where-cowboys-cannot-reach.html 2. CNET Documentary and News Article. "Drones on the farm: Using facial recognition to keep cows healthy". By Molly Price. August 22, 2019.https://www.cnet.com/news/drones-and-facial- recognition-could-help-keep-cows-healthy/ 3. WKYT News Report. "UK Researchers Using Drones to Solve Billion Dollar Cattle Industry Prob- lem". By Adam Burniston. January 29, 2020.https://www.wkyt.com/content/news/UK-researchers- working-to-solve-billion-dollar-cattle-industry-problem-with-drones-567397761.html 4.Spectrum News 1 Report. "Drone Research at The University of Kentucky Could Rescue Cattle Industry". By Crystal Sicard. March 8, 2020.https://spectrumnews1.com/ky/lexington/news/2020/03/08/drones-save-cows In addition, results from this project were presented at a variety of extension and outreach activities. Please see Other Products for details. At these events, we made contact with approximately 400 producers. Finally, this project was featured on a University of Kentucky Cooperative Extension video. Please see Other Products for details. What do you plan to do during the next reporting period to accomplish the goals?During the next reporting period, we plan to make progress against Objectives 1--4. In particular, we plan to conduct additional cattle response studies (Objective 4). We plan to develop the integrated outdoor multi-UAV system. Notably, we plan to develop the observer UAV and associated computer vision algorithms for detecting and tracking cattle in pasture (Objectives 2 and 3). We also plan to develop collision avoidance approaches using the UAVs onboard stereo cameras (i.e., advanced sensing capability). Finally, we plan to perform integrated testing of the UAV system.
Impacts What was accomplished under these goals?
During this reporting period, we made 4 major accomplishments. These accomplishments are as follows: 1. Facial Imaging(Objective 1). During this reporting period, we continued to refine the new facial recognition algorithm for cows. Compared to existing methods, this new algorithm improves the recognition accuracy by adopting a recently developed advanced deep-learning based framework. 2. Three-Dimensional Scan of Cattle from UAVs(Objective 2). During the previous reporting periods, we conducted experiments to determine optimal flight paths for 3 UAVs to simultaneously image a cow. We collected 108 images along 9 flight paths and analyzed this data. The image sets (which were collected around two life-sized cow statutes) were subdivided to represent flight paths. These flight paths varied in radius and elevation above ground level relative to the cow. The images were processed to generate 3D point clouds, which, in turn, were used to estimate the cow's volume. During this reporting period, we developed a high-fidelity LiDAR-based scanning system. This system allowed us to perform 3D scans to evaluate the accuracy of volume estimates obtained from the 3D point clouds generated from 2D images from UAVs. 3. Relative-to-Target UAV Formation Control Method and Experiments(Objectives 1--3). We continued to develop and improve our new relative-to-target (R2T) formation control algorithm that positions UAVs in a desired formation around a cow to obtain images simultaneously from different angles. Notably, we developed and implemented novel collision avoidance safety filters. These filters adjust the desired UAV controls to enforce hard safety constraints, namely, actuator amplitude and rate constraints, UAV velocity and acceleration constraints, and no-collision constraints. We have conducted outdoor flight tests to validate these new safety filters. We also developed new middle loop UAV control methods to improve flight performance. 4. Evaluate Cattle Response to UAVs(Objective 4). We conducted experiments to evaluate the potential stress induced by UAVs flying near cattle. In previous reporting periods, we focused on single UAVs flying near cattle. In this reporting period, we had multiple UAVs fly near the cattle. Heifer heart rate and movement rate were measured preflight and during UAV flight in beats per minute (bpm) and meters per second (mps) at 1 Hz to measure physiological and behavioral response respectively. The studies demonstrated that beef heifers were not stressed by multiple UAV flights as evidence in no significant change in heart rate and movement rate during UAV flights.
Publications
- Type:
Other
Status:
Published
Year Published:
2021
Citation:
Jackson, J.J., Ladino, C., Abdulai, G. 2021. AEN-160 UAV Decision Aid for Estimating the Cost of Using a Drone in Production Agriculture. University of Kentucky Agricultural Communications Service. http://www2.ca.uky.edu/agcomm/pubs/AEN/AEN160/AEN160.pdf
- Type:
Journal Articles
Status:
Published
Year Published:
2021
Citation:
Z. S. Lippay and J. B. Hoagg. Formation control with time-varying formations, bounded controls, and collision avoidance, IEEE Transactions on Control System Technology, 2021. DOI: 10.1109/ TCST.2021.3062824
- Type:
Journal Articles
Status:
Published
Year Published:
2021
Citation:
Abdulai, G., Sama, M., Jackson, J.J. 2021. A Preliminary Study of the Physiological and Behavioral Response of Beef Cattle to Unmanned Aerial Vehicles (UAVs). Applied Animal Behaviour Science, 241.
- Type:
Other
Status:
Published
Year Published:
2021
Citation:
Jackson, J.J. 2021. AEN-159 Using Drones to Monitor Fence Lines. University of Kentucky Agricultural Communications Service. http://www2.ca.uky.edu/agcomm/pubs/AEN/AEN159/AEN159.pdf
|
Progress 02/15/19 to 02/14/20
Outputs Target Audience: The target audience for this project during this reporting period includes researchers in the areas of autonomous systems, UAVs, computer vision, control systems, and livestock systems. The target audience also includes cattle producers. Changes/Problems:
Nothing Reported
What opportunities for training and professional development has the project provided?This project has provided research training for 6 graduate students (5 Ph.D. and 1 M.S. student) and one undergraduate student. This project has provided valuable interdisciplinary research experience for these students. One Ph.D. student from this project graduate in the fall of 2019, and she is currently in a postdoctoral research position. One M.S. student from this project graduated in the spring of 2020, and he is currently in an industry position. The research conducted in this project will constitute a significant portion of the Ph.D. dissertations for the 4 other graduate students. How have the results been disseminated to communities of interest?Results from this project have published and/or presented at the 2019 IEEE Conference on Decision and Control and the 2019 ASABE Annual International Meeting. Results from this project were also presented at the 2020 National Robotics Initiative PI Meeting in Arlington, VA. Results from this project have been accepted for publication and presentation at the 2020 American Control Conference, and results are under review for publication in theIEEE Transactions on Control System Technology. This project has been featured in the following 3 popular press outlets: 1. CNET Documentary and News Article. "Drones on the farm: Using facial recognition to keep cows healthy". By Molly Price. August 22, 2019.https://www.cnet.com/news/drones-and-facial- recognition-could-help-keep-cows-healthy/ 2. WKYT News Report. "UK Researchers Using Drones to Solve Billion Dollar Cattle Industry Prob- lem". By Adam Burniston. January 29, 2020.https://www.wkyt.com/content/news/UK-researchers- working-to-solve-billion-dollar-cattle-industry-problem-with-drones-567397761.html 3. Spectrum News 1 Report. "Drone Research at The University of Kentucky Could Rescue Cattle In- dustry". By Crystal Sicard. March 8, 2020.https://spectrumnews1.com/ky/lexington/news/2020/03/08/ drones-save-cows- In addition, results from this project were presented at a variety of extension and outreach activities. Please see Other Products for details. At these events, we made contact with approximately 400 producers. Finally, this project was featured on a University of Kentucky Cooperative Extension video. Please see Other Products for details. What do you plan to do during the next reporting period to accomplish the goals?During the next reporting period, we plan to make progress against Objectives 1--4. In particular, we plan to conduct additional cattle response studies (Objective 4). We plan to develop the integrated outdoor multi-UAV system and conduct outdoor UVA tests (Objectives 2 and 3). We plan to build a database of cattle facial images (Objective 1). We also plan to further develop the generative three-dimensional cow model.
Impacts What was accomplished under these goals?
During this reporting period, we made 5 major accomplishments, which contribute to Objectives 1--4. These accomplishments are as follows: 1. Facial Imaging(Objective 1). We developed a new facial recognition algorithm for cows. Compared to existing methods, this new algorithm significantly improves the recognition accuracy by adopting a recently developed advanced deep-learning based framework. A paper on this work has been drafted and submitted; it is currently under review. 2. Three-Dimensional Scan of Cattle from UAVs(Objective 2). During the previous reporting period, we conducted experiments to determine optimal flight paths for 3 UAVs to simultaneously image a cow. We collected 108 images along 9 flight paths. During this reporting period, we processed and analyzed this data. The image sets (which were collected around two life-sized cow statutes) were subdivided to represent flight paths. These flight paths varied in radius and elevation above ground level relative to the cow. The images were processed to generate 3D point clouds, which, in turn, were used to estimate the cow's volume. Analysis revealed an optimal set of flight paths as well as several paths that produce inaccurate 3D models. In general, closer radii and higher elevations produced the most consistent volume estimate. 3. Generative Three-Dimensional Cow Model(Objectives 2). We built a 48-camera imaging setup, and we are in the process of collecting a three-dimensional cow image data set under field conditions. The existing dataset has been used successfully to create 3D cattle models. However, we plan to capture many more cattle images in the coming months to create a real 3D cattle database, which can be used to build a regression model for cattle. 4. Relative-to-Target UAV Formation Control Method and Experiments(Objectives 1--3). We continued to develop and improve our new relative-to-target (R2T) formation control algorithm that positions UAVs in a desired formation around a cow to obtain images simultaneously from different angles. This R2T formation control method allows the formation to rotate as the imagining target (e.g., cow) changes its orientation. We have conducted extensive indoor and outdoor flight tests to validate this R2T formation control method. 5. Evaluate Cattle Response to UAVs(Objective 4). We conducted experiments to evaluate the potential stress induced by UAVs flying near cattle. The cattle-UAV interaction for two different groups of cattle was evaluated. The first set contained 18 bred beef heifers that were approximately 18 months old, while the second set was composed of 16 weaned beef heifers that were 7 to 8 months old. For both sets of animals, two UAV flight treatments used circular and grid flight pattern. Circular flight patterns would represent direct animal monitoring, while grid flight patterns would represent the flights that are conducted for pasture monitoring. UAV flights were conducted at 9.1 m above ground level (AGL) and each treatment lasted for about five (5) minutes. For each set of heifers, a total of 120 flights were conducted over a four-week period. Heifer heart rate and movement rate were measured preflight and during UAV flight in beats per minute (bpm) and meters per second (mps) at 1 Hz to measure physiological and behavioral response respectively. At the end of the study, the mean heifer preflight heart rate was 57 - 80 bpm, and UAV flight heart rate was 58 - 82 bpm. The mean heifer preflight movement rate was 0.00 - 0.14 mps, and UAV flight movement rate of 0.00 - 0.07 mps. The studies demonstrated that beef heifers were not stressed by UAV flights as evidence in no significant change in heart rate and movement rate during UAV flights. The use of UAVs as a cattle health monitoring tool does not induce stress in beef cattle raised on pasture.
Publications
- Type:
Conference Papers and Presentations
Status:
Published
Year Published:
2019
Citation:
Z. S. Lippay and J. B. Hoagg. Formation control in a rotating frame for agents with double integrator dynamics: Theory and rotorcraft experiments, Proc. Conf. Dec. Contr., Nice, France, December 2019. DOI: 10.1109/CDC40024.2019.9029757
- Type:
Conference Papers and Presentations
Status:
Accepted
Year Published:
2020
Citation:
Z. S. Lippay and J. B. Hoagg. Leader-following formation control with time-varying formations and bounded controls for agents with double integrator dynamics, Proc. Amer. Contr. Conf., Denver, CO, July 2020.
- Type:
Journal Articles
Status:
Under Review
Year Published:
2020
Citation:
Z. S. Lippay and J. B. Hoagg. Formation control with time-varying formations, bounded controls, and collision avoidance, IEEE Transactions on Control System Technology, (under review).
- Type:
Theses/Dissertations
Status:
Published
Year Published:
2020
Citation:
Pampolini, L.F. 2020. An Assessment of 2D and 3D Spatial Accuracy of Photogrammetry for Livestock Health Monitoring. MS Thesis. University of Kentucky.
- Type:
Conference Papers and Presentations
Status:
Other
Year Published:
2019
Citation:
Abdulai, G., Sama, M., Jackson, J.J. 2019, Low cost GPS receiver accuracy for cattle monitoring. ASABE Annual International Meeting, Boston, MA, July 7- 10
- Type:
Conference Papers and Presentations
Status:
Other
Year Published:
2020
Citation:
J. B. Hoagg, J. J. Jackson, M. P. Sama, and R. Yang. Autonomous unmanned aerial robots for livestock health monitoring, 2020 National Robotics Initiative Principal Investigators Meeting, Arlington, VA, February 2020.
|
Progress 02/15/18 to 02/14/19
Outputs Target Audience:The target audience for this project during this reporting period includes researchers in the areas of autonomous systems, UAVs, computer vision, control systems, and livestock systems. The target audience also includes cattle producers. Changes/Problems:
Nothing Reported
What opportunities for training and professional development has the project provided?This project has provided research training for 5 graduate students and one undergraduate student. The research conducted in this project will constitute a significant portion of the PhD dissertations for 4 of these graduate students. How have the results been disseminated to communities of interest?Results from this project have been submitted for publication and presentation at the 2019 IEEE Conference on Decision and Control. Results from this project were also presented at the 2018 National Robotics Initiative PI Meeting in Washington D.C. In addition, results from this project were presented at the 2018 Beef Bash in Kentucky on September 20, 2018. This event was attended by 400 producers, and we made contact with approximately 120 producers. What do you plan to do during the next reporting period to accomplish the goals?During the next reporting period, we plan to make progress against Objectives 1--4. In particular, we plan to conduct additional cattle response studies (Objective 4). We plan to conduct outdoor UVA tests (Objectives 2 and 3). We plan to build a database of cattle facial images (Objective 1). We also plan to further develop the generative three-dimensional cow model.
Impacts What was accomplished under these goals?
During this reporting period, we made 4 major accomplishments, which contribute to Objectives 1--4. These accomplishments are as follows: Evaluate Cattle Response to UAVs(Objective 4). We conducted experiments to evaluate the potential stress induced by UAVs flying near cattle. A total of 20 dairy heifers (2 heifers per 2 acre pasture) were subjected to 3 different treatments of UAV flight: i) 18 m AGL grid over field (pasture monitoring); ii) 7.6-9.1 m AGL grid over field (lower altitude); and iii) 7.6-9.1 m AGL circular flight around cow. For each trial, we conducted 5-min flights per pasture with an average speed of 2.3 m/s. The animals' behavioral response were measured with Land Air Sea® trackers, and the animals' heart rate response were measured with Polar® H10 and Polar® Equine electrode set. These experiments demonstrated no significant behavioral changes. Moreover, the heart rate during flight was comparable to the heart rate before the flight. Three-Dimensional Scan of Cattle from UAVs(Objective 2). We conducted experiments to determine optimal flight paths for 3 UAVs to simultaneously image a cow. We collected 108 images along 9 flight paths. Flight paths were programmed into the UAV autopilot and the flight was repeated 3 times. Three-dimensional models were generated using Pix4Dmapper. Three paths were chosen from the 9 to form an individual treatment. The experiments and analyses demonstrate that three-dimensional models degrade if the number of images is reduced. Certain combinations resulted in entire sets of images being dropped from analysis because of an inadequate number of tie points. Generative Three-Dimensional Cow Model(Objectives 1 and 2). We designed a generative three-dimensional cow model that will be used to estimate cow volume and weight. To obtain data for the generative 3D cow model, we built a multi-camera imaging setup, and we are in the process of collecting a three-dimensional cow image data set. The generative cow model is able to generate a variety of cow shapes and poses with relatively few tuning parameters. Relative-to-Target UAV Formation Control Method and Experiments(Objectives 1--3). We developed a new relative-to-target (R2T) formation control algorithm that positions UAVs in a desired formation around a cow to obtain images simultaneously from different angles. This R2T formation control method allows the formation to rotate as the imagining target (e.g., cow) changes its orientation. We have conducted indoor flight tests to validate this R2T formation control method.
Publications
- Type:
Conference Papers and Presentations
Status:
Under Review
Year Published:
2019
Citation:
Z. S. Lippay and J. B. Hoagg. "Formation Control in a Rotating Coordinate Frame for Agents with
Double Integrator Dynamics." Proc. Conf. Dec. Contr., 2019 (under review).
|
|