Recipient Organization
N Y AGRICULTURAL EXPT STATION
(N/A)
GENEVA,NY 14456
Performing Department
Geneva - Horticulture
Non Technical Summary
The common bean (Phaseolus vulgaris L.) is an important crop in several regions of the United States (U.S.). Demand for dry and snap beans is expected to remain strong or increase as consumers search for healthy alternatives in their diet and there are greater numbers of citizens in the U.S. with a culinary tradition of consuming beans. In order to compete with other commodities such as soybeans and maize, dry bean seed yields need to continue to increase. More efficient use of inputs such as water and nitrogen is needed to reduce production costs and to preserve scarce resources. Numerous abiotic and biotic stresses can threaten both dry and snap bean production. Fungal, bacterial, and viral diseases are among the main production constraints, whereas drought, heat, soil mineral deficiencies, and short growing seasons reduce productivity and contribute to a yield-gap between on-farm and potential seed yield in many production areas.In addition to human health benefits, beans promote soil and environmental health through biological fixation of atmospheric nitrogen which allows beans to be produced with less N-fertilizer than other non-legume crops. The nitrogen fixation characteristic of common bean and other legumes promotes sustainable agriculture practices by reducing fertilizer use, the potential for water contamination through run-off, and crop expansion in low nitrogen soils.Several diseases can occur simultaneously and reduce dry and snap bean yield and quality within and across different production regions. Yield losses can range from 10 to 90%, depending on the diseases involved and the severity. For example, in the Western U.S., Beet curly top virus (BCTV), Bean common mosaic virus (BCMV), Fusarium root rot (caused by Fusarium solani f.sp. phaseoli) and Fusarium wilt (caused by Fusarium oxysporum f.sp. phaseoli), and white mold (caused by Sclerotinia sclerotiorum), can simultaneously infect susceptible cultivars. Similarly, in Michigan, Minnesota, North Dakota, and Wisconsin, anthracnose (caused by Colletotrichum lindemuthianum), bacterial brown spot [caused by Pseudomonas syringae pv. syringae (Psp)], BCMV, common bacterial blight [caused by Xanthomonas axonopodis pv. phaseoli (Xcp) and X. axonopodis pv. phaseoli var. fuscans (Xcpf), Syn. with X. campestris], halo blight (caused by Pseudomonas syringae pv. phaseolicola), root rots (in most cases caused by a complex of fungal pathogens), rust (caused by Uromyces appendiculatus), and white mold can occur together and cause severe yield losses. Similarly, the root rot pathogens cause serious problems in snap beans and kidney beans across all production regions. In addition, snap beans are vulnerable to regional epidemics of viral diseases including Beet mild curly top virus (BMCTV) in the western states (e.g., California, Idaho and Washington), and to a virus complex in the Great Lakes states which includes Alfalfa mosaic virus (AMV), Cucumber mosaic virus (CMV), Bean yellow mosaic virus (BYMV), and Clover yellow vein virus (ClYVV), among others. Many of these pathogens are highly variable in their virulence and new races or strains can appear in different regions.This interdisciplinary, multi-state, collaborative W-3150 project proposal comprises several complementary sub-projects. Key collaboration among participants in these sub-projects is designed to achieve our overall goals and objectives of developing high yielding cultivars with enhanced culinary and nutritional qualities and resistance to major abiotic and biotic stresses. These cultivars will help reduce production costs and pesticide use, increase yield and competitiveness of the U.S. bean growers, and sustain production for domestic consumption and export. Researchers participating in each sub-project have complementary expertise and represent two or more institutions. This research scheme has been very successful as evidenced by the "Excellence in Multistate Research Award" given to the W-1150 multistate project by the Western Association of Agricultural Experiment Station Directors (WAAESD) in March of 2009. The inclusive group of bean researchers jointly prepared the project renewal and is committed to collaborating with each other to achieve the overall objectives. For simplicity, these projects are grouped into the following priorities: biotic stresses, abiotic stresses, characterization/utilization of exotic germplasm, applied genomics, nurseries, nutritional and health related benefits in the human diet, and production/sustainability.
Animal Health Component
80%
Research Effort Categories
Basic
10%
Applied
80%
Developmental
10%
Goals / Objectives
Improving bean yield potential by incorporating resistance/tolerance to major biotic and abiotic stresses, broadening the genetic base, implementing/integrating genomic resources and coordinating field trial nurseries.
The overall strategy is based on collaborative research of constraints shared across production regions. This collaboration includes germplasm and pathogen exchange, sharing of protocols and techniques (e.g. DNA markers, virus isolates and infectious viral clones, field/greenhouse/lab. screening methodologies, etc.), regional nurseries and trials, and screening of genotypes for the traits of interest. As a result of this exchange of knowledge and material, breeding projects will be able to introgress and pyramid favorable alleles and QTL for enhanced seed yield potential, nutritional value, and resistance to multiple abiotic and biotic stresses using a multi-disciplinary and multi-institutional team approach. To accomplish these objectives, our research activities are divided into various sub-projects (see Appendix 1) in which researchers from two or more participating states and institutions conduct research on each major problem as a team. To identify and set priorities, all W-3150 participating researchers and stakeholders (such as growers and industry), will be periodically consulted about production problems and deficiencies in the available germplasm.
Project Methods
Heat tolerance. Collaborative breeding for high ambient temperature tolerance in the dry bean and snap bean market classes will continue under hot summer field conditions (33C/24°C) in Puerto Rico. Thus, tolerance to both high day and high night temperature conditions will be effectively tested in this environment. Greenhouse evaluation will also be conducted at several sites, including NE, where high ambient temperatures can be achieved. Phenotypic selection based on yield components, reproductive traits such as pollen shed, and additional phenotypic traits facilitating rapid evaluation will be implemented. Improved heat tolerant germplasm will be developed in the snap bean and dry bean market classes using pedigree and recurrent selection. Advanced lines selected for drought tolerance through a shuttle breeding program between PR and NE will be tested for heat tolerance. The RCB 593 x INB 841 RIL population and diversity panels will be evaluated for the development of markers for MAS of heat tolerance.Rust. Combinations of effective Andean (new gene in PI 260418, Ur-9, Ur-12, and Ur-4) and Mesoamerican (Ur-11, the new gene in PI 310762, Ur-5, and Ur-7) rust resistant genes will continue to be developed in cultivars in all US market classes, through collaboration between the ARS Bean Project in Beltsville, MD and W-3150 collaborators and private seed companies. Identification of new sources and genes for resistance through W-3150 collaboration will continue, as well as the development of markers for MAS. New Andean sources or genes with broad rust resistance from the ADP will be identified. Interaction between several rust resistance genes including Ur-4 and Ur-5, Ur-4 and Ur-11, Ur-3 and Ur-11, and Ur-4 and the gene in PI 260418 will be examined for efficacy of resistance to specific races of the bean rust pathogen.National/Regional Nurseries. This multi-state project coordinates five nurseries grown every year: The Bean Rust Nursery (BRN) grown in Beltsville, MD, the national Cooperative Dry Bean Nursery (CDBN) grown at nine locations across the country, the Midwest Regional Performance Nursery (MRPN) grown in four states, the Bean White Mold Nursery (BWMN) grown at seven locations, the Western Regional Bean Trial (WRBT) grown in four states, and the Dry Bean Drought Nursery (DBDN) grown in five states. These nurseries have facilitated the evaluation of genotypes across multiple environments and consequently, the release of several cultivars and germplasm lines that have been used in more than one production area. Private bean breeding programs are invited to submit genotypes to the CDBN, which allows mutual benefits, communication, and collaboration among the public breeding programs and the private sector. In addition, these nurseries provide long-term databases with genetic and agronomic information that can be used as a tool to estimate genetic gains and for modeling effects of climate and photoperiod on performance.White mold. Knowledge of genomic locations of QTL conditioning avoidance and partial physiological resistance to WM through fine mapping will allow pyramiding of small effect QTL and generate bean lines for release with higher levels of resistance. Association mapping, next generation sequencing, and RNA expression will be used for fine mapping and candidate gene analysis. Association mapping diversity panels and RIL populations will continue to be shared by the W-3150 research community for characterization of QTL for various traits including resistance to WM. A MAGIC population to study white mold resistance within the Mesoamerican gene pool is under development at NDSU. Metabolic profiling, will be deployed for identification of novel WM resistance mechanisms. Avoidance and physiological resistance from multiple and independent sources will be combined for increased WM resistance. Levels of resistance incorporated into preferred seed types with high agronomic performance will continue to be tested in a coordinated uniform BWMN. Characterization of isolates will involve collection of more grower field isolates in the Great Lakes, Red River Valley and High Plains bean production areas. Pathogen haplotypes and their relationship to MCGs and aggressiveness relationships as well as isolate comparison studies between grower fields and screening nurseries will be studied. In addition, another important characteristic of S. sclerotiorum isolates, fungicide sensitivity, will be determined for selected isolates maintained by W-3150 researchers (Otto-Hanson et al., 2011).