Source: AGRICULTURAL RESEARCH SERVICE submitted to NRP
DEVELOP IMPROVED PLANT GENETIC RESOURCES TO ENHANCE PASTURE AND RANGELAND PRODUCTIVITY IN THE SEMIARID REGIONS OF THE WESTERN U.S.
Sponsoring Institution
Agricultural Research Service/USDA
Project Status
ACTIVE
Funding Source
Reporting Frequency
Annual
Accession No.
0424214
Grant No.
(N/A)
Cumulative Award Amt.
(N/A)
Proposal No.
(N/A)
Multistate No.
(N/A)
Project Start Date
Feb 26, 2013
Project End Date
Feb 25, 2018
Grant Year
(N/A)
Program Code
[(N/A)]- (N/A)
Recipient Organization
AGRICULTURAL RESEARCH SERVICE
(N/A)
LOGAN,UT 84322
Performing Department
(N/A)
Non Technical Summary
(N/A)
Animal Health Component
30%
Research Effort Categories
Basic
70%
Applied
30%
Developmental
0%
Classification

Knowledge Area (KA)Subject of Investigation (SOI)Field of Science (FOS)Percent
1210710100025%
2010720102025%
2020799104040%
2031640107010%
Goals / Objectives
Objective 1: Improve pasture and rangeland management practices and forage nutritional quality through improved genetics for structure/variation, stand establishment, forage quality, nutrient cycling and persistence characteristics for use on disturbed and semi-arid rangelands in the Great Basin and eastern Upper Mojave Desert, through collection, characterization, improvement and evaluation of grass, legume, and forb germplasm. (Objective C.2, NP 215 Action Plan) Objective 2: Develop grass, legume, forbs, and sub-shrub perennial germplasms/cultivars with increased stand establishment and persistence, seed production, and forage yield and quality on dry, harsh disturbed rangelands of the western US. (Objective C.2, NP 215 Action Plan) Objective 3. Develop breeding strategies and improved grass and legume germplasm for use on pastures and turf under low inputs in the Intermountain West. (Objective E.1, F.2, G.1, J.1, NP 215 Action Plan) Objective 4: Identify grass, legume, and sub-shrub species and mixtures that have increased forage biomass and quality for fall and winter grazing on semi-arid rangelands. (Objective A.1, C.2, NP 215 Action Plan) Objective 5: Identify and describe trait inheritance, quantitative trait loci (QTL), and association mapping for rhizome development, fall and winter forage yield and quality, salinity tolerance, winter hardiness, heading and flowering date, turf quality, and selenium and other heavy metal uptake for improved forages using genomic techniques. (Objective C. 2, NP 215 Action Plan) Objective 6: Develop integrated management strategies that decrease invasive weed seed banks, increase biodiversity through the establishment of grass, legume, forb mixtures, and develop plant mixtures that reduce wildfires on salt desert and sagebrush shrub lands in the Great Basin. (Objective B.1, NP Action Plan 215)
Project Methods
The semi-arid and arid rangelands and irrigated pastures of the western U. S. provide a broad array of ecosystem services, including livestock forage, a diversity of native plants, pollinators, animals, and recreational activities. Many of these regions are classified as severely disturbed and non-productive. Moreover, based on predicted climate change models for semi-arid regions, environments will become hotter and drier, increasing the already high rate of rangeland and pasture degradation, resulting in the invasion of annual grasses, increasing wildfire frequency, and reducing forage productivity. Thus, in water-limiting environments, there is a need to develop grasses, legumes, and forbs that will establish under drought, compete with invasive weeds, and persist with adequate forage production and quality to meet the needs of wildlife and livestock producers throughout the year. Increasing digestibility in pasture grasses by 1% results in a 3% increase in livestock gains. The Forage and Range Research Lab (FRRL) combines the disciplines of plant breeding, molecular biology, and ecology in conducting experiments to better understand the genetic mechanisms and pathways of seedling establishment, persistence, competition, forage yield and quality, and other abiotic stresses to develop improved plant materials and management practices for use on these western U.S. rangelands and pastures. These plant materials and management strategies will improve sustainability by reducing the impact of wildfires and invasive weeds, improving wildlife habitat, and conserving, restoring, renovating, and reclaiming degraded landscapes.

Progress 02/26/13 to 02/12/18

Outputs
Progress Report Objectives (from AD-416): Objective 1: Improve pasture and rangeland management practices and forage nutritional quality through improved genetics for structure/ variation, stand establishment, forage quality, nutrient cycling and persistence characteristics for use on disturbed and semi-arid rangelands in the Great Basin and eastern Upper Mojave Desert, through collection, characterization, improvement and evaluation of grass, legume, and forb germplasm. (Objective C.2, NP 215 Action Plan) Objective 2: Develop grass, legume, forbs, and sub-shrub perennial germplasms/cultivars with increased stand establishment and persistence, seed production, and forage yield and quality on dry, harsh disturbed rangelands of the western US. (Objective C.2, NP 215 Action Plan) Objective 3. Develop breeding strategies and improved grass and legume germplasm for use on pastures and turf under low inputs in the Intermountain West. (Objective E.1, F.2, G.1, J.1, NP 215 Action Plan) Objective 4: Identify grass, legume, and sub-shrub species and mixtures that have increased forage biomass and quality for fall and winter grazing on semi-arid rangelands. (Objective A.1, C.2, NP 215 Action Plan) Objective 5: Identify and describe trait inheritance, quantitative trait loci (QTL), and association mapping for rhizome development, fall and winter forage yield and quality, salinity tolerance, winter hardiness, heading and flowering date, turf quality, and selenium and other heavy metal uptake for improved forages using genomic techniques. (Objective C. 2, NP 215 Action Plan) Objective 6: Develop integrated management strategies that decrease invasive weed seed banks, increase biodiversity through the establishment of grass, legume, forb mixtures, and develop plant mixtures that reduce wildfires on salt desert and sagebrush shrub lands in the Great Basin. (Objective B.1, NP Action Plan 215) Approach (from AD-416): The semi-arid and arid rangelands and irrigated pastures of the western U. S. provide a broad array of ecosystem services, including livestock forage, a diversity of native plants, pollinators, animals, and recreational activities. Many of these regions are classified as severely disturbed and non-productive. Moreover, based on predicted climate change models for semi-arid regions, environments will become hotter and drier, increasing the already high rate of rangeland and pasture degradation, resulting in the invasion of annual grasses, increasing wildfire frequency, and reducing forage productivity. Thus, in water-limiting environments, there is a need to develop grasses, legumes, and forbs that will establish under drought, compete with invasive weeds, and persist with adequate forage production and quality to meet the needs of wildlife and livestock producers throughout the year. Increasing digestibility in pasture grasses by 1% results in a 3% increase in livestock gains. The Forage and Range Research Lab (FRRL) combines the disciplines of plant breeding, molecular biology, and ecology in conducting experiments to better understand the genetic mechanisms and pathways of seedling establishment, persistence, competition, forage yield and quality, and other abiotic stresses to develop improved plant materials and management practices for use on these western U.S. rangelands and pastures. These plant materials and management strategies will improve sustainability by reducing the impact of wildfires and invasive weeds, improving wildlife habitat, and conserving, restoring, renovating, and reclaiming degraded landscapes. This is the final report for this project which terminated in February 2018 and has been replaced by a bridging project 2080-21000-016-00D, �Develop Improved Plant Genetic Resources to Enhance Pasture and Rangeland Productivity in the Semiarid Regions of the Western U.S.�, while the research plan for the next five years undergoes Office of Scientific Quality Review. For additional information, see the report for the bridging project. Significant progress was made over the course of this project toward all objectives. Objective 1: Collections of sideoats gramma, big galleta grass, rushy milkvetch, Utah trefoil, and Lewis flax were made from the Mojave Desert and Great Basin. Morphological and/or genetic diversity studies of these collections were completed. Hybrids made from selected sideoats and big galleta collections were transplanted at Mojave Desert and Utah research sites for observation and selection. Seed was harvested from crossing two of the Utah trefoil populations that were identified as being superior for agronomic traits. This material provides an excellent starting point for developing the first improved germplasm of this species for use in rangeland restoration efforts. Objective 2: New pre-variety germplasms of Searl�s prairie clover were released that improve biodiversity and pollinator efficiency on semiarid rangelands. These native forb releases, designated as Fanny, Bonneville, and Carmel are adapted to differing habitats with variable annual precipitations, and provide a genetically diverse array of genotypes that biologically fix nitrogen as well as provide food for wildlife and native pollinators. There is a need for native grass species that can be utilized for restoration of degraded landscapes in drought-prone regions of the western U.S. As such, �Columbia� bluebunch wheatgrass, �Trailhead II� basin wildrye, and �Bannock II� thickspike wheatgrass were developed and released. These perennial native grasses are adapted to a range of habitats and are important forage for livestock and native wildlife. They were selected for greater seedling establishment and seed production. Salina wildrye is a native perennial grass that could be useful for rangeland restoration. However, its poor seed production has prevented this grass from securing a foothold in the seed industry. Two cycles of selection for more seed heads resulted in 40 percent more seed heads and 37 percent more seed yield per plant. These results indicate that salina wildrye seed yield can be improved through plant breeding. As ecosystems experience increased frequency of drought, weed invasion, and wildfire there is a need for grasses that establish and persist under harsh conditions. As such, �Stabilizer� Siberian wheatgrass was developed and released due to its rapid establishment, persistence, and ability to compete against troublesome weeds such as cheatgrass and medusahead rye. �Foragecrest� crested wheatgrass was also developed and released for its ability to establish, persist, and produce forage on the western U.S. rangelands that receive less than 300 millimeters of annual precipitation. To develop an improved tall wheatgrass cultivar with increased forage production and nutritional quality, two studies were completed that described the genetic variation for agronomic traits within National Plant Germplasm System collections and known cultivars. Included in the final selection were parent clones originating from PI�s 21878, 109452, 578680, 442631, and the cultivar Alkar. Commercial seed of this new plant material is being produced, pending official cultivar release. Objective 3: Breeding and selection for improved forage production and nutritive value resulted in improved populations of meadow bromegrass, orchardgrass, and tall fescue. �Arsenal�, a new meadow bromegrass cultivar was released with improved drought tolerance and nutrition under non-irrigated pasture settings. Two orchardgrass germplasm were released for use in orchardgrass breeding programs. UTDG-101, is a late-maturing orchardgrass germplasm noted for its improved forage quality and increased winter tolerance, and USDA-UTWH-102 was derived from high elevation orchardgrass germplasm selected for improved winter hardiness. An evaluation to determine the low-input turf potential of drought tolerant wheatgrasses was completed. Crested, thickspike, and western wheatgrasses when managed under low irrigation generally exhibited less ground cover, but had darker green color, than tall fescue and Kentucky bluegrass. Genetic estimates indicated that selection for increased turfgrass quality in these wheatgrass species would likely result in improved cultivars suitable for low-input turf applications. Objective 4: �Snowstorm�, a new variety of forage kochia was developed and released. Forage kochia is a semi-shrub that has been seeded on rangelands for fall and winter forage and been shown to provide needed protein and reduced winter feed costs by 25 percent. Snowstorm is 64 percent taller, produces 68 percent more forage, and has improved protein and digestibility compared to the previously available variety. The potential of small burnet as a winter forage was studied, and it was determined that small burnet protein content is sufficient to meet ruminate animal needs through the growing season and into winter months. Its forage nutritive value during this period was far superior to any cool season grass or forage legume, including alfalfa. Current breeding efforts have resulted in lines that persist with high forage production. Collaborative research with private producers in Cascade, Montana, identified a mixture of meadow bromegrass, intermediate wheatgrass, small burnet, and alfalfa with great potential for winter forage feeding. This mixture is being tested against other mixtures and an economic analysis will be done to determine the sustainability of winter grazing in the region. Objective 5: Rhizomes are an important evolutionary adaptation in plants. A major quantitative trait locus (QTL), a DNA marker of a chromosome region containing genes of significance for rhizome development, was found on the distal end of chromosome 6 in perennial wildrye, setting up the potential of sequencing and developing more precise DNA markers of this important plant trait. Grasses that flower later would enhance their use in grass-legume mixtures. Several genes were found associated with late flowering in orchardgrass. These genes are being converted into molecular markers and are being used for breeding within the USDA-ARS and in cooperation with a private company. Intermediate wheatgrass is a dual-purpose perennial grain and forage crop. A high-density linkage map of intermediate wheatgrass was developed and then used to; 1) uncover the genetic architecture of seed weight and size in intermediate wheatgrass, and 2) assemble the genome sequence for this species. This genome sequence will be publicly available and used to investigate genome relationships between relatives of intermediate wheatgrass including wheat. DNA markers were developed to distinguish among types of Kentucky bluegrass cultivars, which are now being used by companies and universities for hybrid detection, apomixis, and to determine relationships among bluegrass varieties. In addition, DNA assays using three candidate genes, were developed for measuring salt tolerance, resulting in the identification of salt tolerant Kentucky bluegrass breeding lines. The breeding lines and assay are currently being used in partnerships with companies on other Kentucky bluegrass lines as well as other turf species. Objective 6: A comprehensive inventory and analysis of shrub reduction technologies and re-seeding with improved plant materials was completed. After applying current shrub reduction methods, native shrubs did not increase, and forbs generally declined over time; however, large increases in perennial grasses were observed, suggesting that seeding efforts enhanced their establishment in the understory areas. Further research is needed to understand the causes of forb mortality, and to decipher how greater increases of non-native relative to native seeded species will influence species diversity change at rangeland restoration sites. A study on establishment and survival of seeded species was completed that indicated that legacy effects from past land use (i.e., previous agronomic cultivation and production) should be considered when planning restoration projects. Vegetation structure and plant community responses to a two-way chain-harrow treatment and broadcast plantings were evaluated at eight Wyoming big sagebrush sites in Utah. These sites differed in land-use history; five were cultivated for dryland wheat production during the 1950-1980s then seeded with introduced forage grasses, while three had not been exposed to this land-use legacy. Five years after the chain-harrow treatment, mature sagebrush cover remained reduced for both land-use histories, yet density of sagebrush seedlings and broom snakeweed increased on the previously cultivated sites. In addition, perennial forb cover increased on the previously cultivated sites, whereas, perennial grasses increased at the non-cultivated sites. Results indicated that variable plant response to sagebrush reduction and re-seeding is possible within the same ecological site, and that legacy effects due to past cultivation should be considered when planning restoration projects. Accomplishments 01 Gene discovery for late flowering in grasses. Perennial forage grasses are the basis of the meat and dairy industry, providing essential nutrition to ruminant animals. Because these grasses require expensive nitrogen inputs, there is a trend towards grass-legume mixed pastures that require less inputs while increasing forage mass and nutritive value. However, most grasses switch from vegetative to flowering (reproductive) tillers before alfalfa and other legumes, thereby greatly diminishing the anticipated improved nutritive value. ARS researchers in Logan, Utah, have identified late-flowering genes in orchardgrass and developed molecular markers for rapid late-flowering selection. These late-flowering markers resulted in identification of late-flowering orchardgrass germplasm and provided grass breeders in U. S. and China with a valuable tool to tease apart the timing of flowering from overall seed production potential. These markers enhance the development of grasses specifically for grass-legume mixtures, since previous selection for later flowering in grasses generally decreased seed production, thereby diminishing the profitability and adoption of late-flowering grass varieties.

Impacts
(N/A)

Publications

  • Zhang, Y., Fan, C., Chen, Y., Wang, R., Zhang, X., Han, F., Hu, Z. 2017. The diversity of sequence and chromosomal distribution of new transposable element-related segments in the rye genome revealed by FISH and lineage annotation. Frontiers in Plant Science. 8:1706.
  • He, H., Monaco, T.A. 2018. Vegetation structure and species composition variation of roadside slopes in the Sichuan Basin of China. Journal of Agricultural Science and Botany. 2:1-9.
  • Jones, T.A. 2017. Restoration theory and practice. The Rangeland Journal. 39:417-430.
  • Jones, T.A. 2017. USA restoration scenarios. The Rangeland Journal. 39:431- 450.
  • Liu, R., Wang, R., Yu, F., Lu, X., Dou, Q. 2017. Characterization of St and Y genome in StStYY Elymus species (Triticeae: Poaceae) using Sequential FISH and GISH. Genome. 60:679-685.
  • Robbins, M.D., Staub, J.E., Bushman, B.S., Ma, Y., Johnson, P.G. 2017. Assessment of Asian Festuca rubra germplasm for potential to improved rangeland sustainability in the western United States. Genetic Resources and Crop Evolution. 64:2127.
  • Sagers, J.K., Waldron, B.L., Creech, J.E., Mott, I.W., Bugbee, B. 2017. Salinity tolerance of three competing rangeland plant species: Studies in hydroponic culture. Ecology and Evolution. 7:10916-10929.
  • Monaco, T.A., Williams, J.R., Morris, L.R., Gunnell, K.L., Johanson, J.K. 2017. Variation in sagebrush communities historically seeded with crested wheatgrass in the eastern great basin. Rangeland Ecology and Management. 70:683-690.
  • Zhang, X., Larson, S.R., Gao, L., Teh, S., Dehaan, L.R., Fraser, M., Sallam, A., Kantarski, T., Frels, K., Poland, J., Wyse, D., Anderson, J.A. 2017. Uncovering the genetic architecture of seed weight and size in intermediate wheatgrass through linkage and association mapping. The Plant Genome. doi:10.3835/plantgenome2017.03.0022.
  • Zhao, X., Bushman, B.S., Zhang, X., Robbins, M.D., Larson, S.R., Robins, J. G., Thomas, A. 2017. Association of candidate genes with heading date in a diverse Dactylis glomerata population. Plant Science. 265:146-153.
  • Staub, J.E., Robbins, M.D., Larson, S.R., Johnson, P.G. 2017. USDA-ARS multi-colored ornamental Festuca grass cultivars, "Freedom Fire" Francy, Vida, Heidi, and Kim, for low-input applications in semi-arid environments. HortScience. 52(6),925-931.
  • Lewis, M.B., Schupp, E.W., Monaco, T.A. 2017. Road dust correlated with decreased reproduction of the endangered Utah shrub Hesperidanthus suffrutescens. Western North American Naturalist. 77:430-439.
  • Bushman, B.S., Joshi, A., Johnson, P.G. 2018. Molecular markers improve breeding efficiency in apomictic Poa pratensis L. Agronomy Journal. 8(2) :17.


Progress 10/01/16 to 09/30/17

Outputs
Progress Report Objectives (from AD-416): Objective 1: Improve pasture and rangeland management practices and forage nutritional quality through improved genetics for structure/ variation, stand establishment, forage quality, nutrient cycling and persistence characteristics for use on disturbed and semi-arid rangelands in the Great Basin and eastern Upper Mojave Desert, through collection, characterization, improvement and evaluation of grass, legume, and forb germplasm. (Objective C.2, NP 215 Action Plan) Objective 2: Develop grass, legume, forbs, and sub-shrub perennial germplasms/cultivars with increased stand establishment and persistence, seed production, and forage yield and quality on dry, harsh disturbed rangelands of the western US. (Objective C.2, NP 215 Action Plan) Objective 3. Develop breeding strategies and improved grass and legume germplasm for use on pastures and turf under low inputs in the Intermountain West. (Objective E.1, F.2, G.1, J.1, NP 215 Action Plan) Objective 4: Identify grass, legume, and sub-shrub species and mixtures that have increased forage biomass and quality for fall and winter grazing on semi-arid rangelands. (Objective A.1, C.2, NP 215 Action Plan) Objective 5: Identify and describe trait inheritance, quantitative trait loci (QTL), and association mapping for rhizome development, fall and winter forage yield and quality, salinity tolerance, winter hardiness, heading and flowering date, turf quality, and selenium and other heavy metal uptake for improved forages using genomic techniques. (Objective C. 2, NP 215 Action Plan) Objective 6: Develop integrated management strategies that decrease invasive weed seed banks, increase biodiversity through the establishment of grass, legume, forb mixtures, and develop plant mixtures that reduce wildfires on salt desert and sagebrush shrub lands in the Great Basin. (Objective B.1, NP Action Plan 215) Approach (from AD-416): The semi-arid and arid rangelands and irrigated pastures of the western U. S. provide a broad array of ecosystem services, including livestock forage, a diversity of native plants, pollinators, animals, and recreational activities. Many of these regions are classified as severely disturbed and non-productive. Moreover, based on predicted climate change models for semi-arid regions, environments will become hotter and drier, increasing the already high rate of rangeland and pasture degradation, resulting in the invasion of annual grasses, increasing wildfire frequency, and reducing forage productivity. Thus, in water-limiting environments, there is a need to develop grasses, legumes, and forbs that will establish under drought, compete with invasive weeds, and persist with adequate forage production and quality to meet the needs of wildlife and livestock producers throughout the year. Increasing digestibility in pasture grasses by 1% results in a 3% increase in livestock gains. The Forage and Range Research Lab (FRRL) combines the disciplines of plant breeding, molecular biology, and ecology in conducting experiments to better understand the genetic mechanisms and pathways of seedling establishment, persistence, competition, forage yield and quality, and other abiotic stresses to develop improved plant materials and management practices for use on these western U.S. rangelands and pastures. These plant materials and management strategies will improve sustainability by reducing the impact of wildfires and invasive weeds, improving wildlife habitat, and conserving, restoring, renovating, and reclaiming degraded landscapes. The research project has six objectives, all of which fall under National Program 215, Component 5.1. "Develop and transfer economically viable and environmentally protective production and conservation practices, technologies, plant materials, and integrated management strategies." Progress on this project focuses on the development of improved germplasm for rangeland, pasture, and turf applications and the identification of best management practices for sustainable agriculture in the western U.S. Objective l: Seed was harvested from crossing two populations of Utah trefoil collected at two locations in southern Utah. These two populations had been identified as being superior for agronomic traits of 20 populations evaluated from Nevada, Utah, and Arizona. This material provides an excellent starting point for developing the first improved germplasm of this species for use in rangeland restoration efforts. Lotus utahensis evaluations were published in Rangeland Ecology and Management during this year. With the retirement of ARS scientists, most of the work in the Mojave Desert has been restricted to collecting establishment data and species composition of plantings made fall 2016. Objective 2: Evaluation and selection continued in populations of native legumes, alfalfa, fine and creeping red fescues, and native and introduced wheatgrasses, wildryes, and interspecific hybrids within the Triticeae, and meadow bromegrass for increased plant establishment, stand persistence, and forage yield, as well as, increased tolerance to heat, salt, and drought all traits necessary to survive in increasingly hot/dry climates in the western U.S. Over 250 accessions of bluebunch wheatgrass were evaluated at two Central Great Basin locations for biomass production, seed production, seed test weight, seed germination, seedling vigor (deep-seeding emergence), and 5- and 10-year persistence and vigor. DNA was obtained from each accession and meta-populations were derived based upon genetic similarity. In addition, environmental data were gathered and associated with the origin of each accession including proposed seed transfer zones. Data were used to compute relative fitness (ability to survive and increase in the next generation) of each accession, each meta-population, and each seed transfer zone in comparison to the overall average and against Anatone. It was discovered that Palouse-types of bluebunch wheatgrass, including the standard Anatone, have the highest fitness in the central Great Basin. These fitness data suggest that continued use of Palouse varieties in reseeding the Great Basin will eventually result in the loss of genetically unique accessions that originate from this region. Therefore, accessions that originate within the central Great Basin (via DNA testing and collection site) were identified and selected. Evaluation of improved Forage and Range Research plant materials in harsh, wildfire burned areas of Nevada and Idaho has identified native and non-native grass and legume species that have potential for improvement of degraded rangelands. Two manuscripts have been published that described the physiological processes associated with salinity tolerance in salt tolerant alfalfa. A third manuscript has been prepared characterizing differences at the molecular level between salt tolerant and non-tolerant material. Objective 3: Populations of Kentucky bluegrass, wheatgrasses, and fine- leaved fescue were selected for turf quality and color under limited irrigation and those plants having such were selected and intercrossed for continued evaluation. Populations of tall fescue, orchardgrass, birdsfoot trefoil were selected for improved pasture forage yield and nutritional quality. Field evaluations to test the effectiveness of forage production in grass-legume mixtures comparing these to chemically fertilized monocultures continued. Eight populations of soft lax-leaved tall fescue have been developed by two cycles of divergent selection. These populations include those selected exclusively for decreased fiber, forage mass, or simultaneous selection of decreased fiber and increased forage mass. Multi-location population and progeny trials are underway to determine the gain from selection and obtain data for a cultivar release. Final selections for seed production were made within birdsfoot trefoil and a foundation seed field has been established. This material has improved persistence under grazing and dry conditions typical of the intermountain western U.S. Released the orchardgrass germplasm USDA-UTWH- 102 with increased winter hardiness and established advanced crossing blocks of three elite orchardgrass populations for further selection. Established crossing blocks of advanced turf crested wheatgrass lines for ongoing selection. A manuscript was published describing the increased production associated with including legumes with grasses in mixed pastures and the synergistic effect of tall fescue with birdsfoot trefoil compared to tall fescue with cicer milkvetch, whereas cicer milkvetch mixes well with meadow bromegrass. Objective 4: Unique intermediate and tall wheatgrass populations, developed from intraspecific hybridization for potential as fall and winter forage were evaluated. Collaborative research with Sieben Land and Livestock ranch in Cascade Montana identified a meadow bromegrass, intermediate wheatgrass, small burnet, and alfalfa mixture as most productive for improving a winter forage feeding management of cattle. Results indicate that planting a mixture of intermediate wheatgrass and meadow brome more than doubled the forage yield and subsequent animal carrying capacity compared to the native range and orchardgrass/alfalfa mix typically used as winter forage on the ranch. Objective 5: Continued experimentation to understand the genetic and physiological mechanisms responsible for yield and quality-related traits under salt and water stress in wildryes, orchardgrass, Kentucky bluegrass, alfalfa, and fine fescue has identified unique plants and populations that have potential for rangeland pasture, and turfgrass low-input (water and fertilizer) applications. A whole transcriptome study of Kentucky bluegrass breeding lines tolerant and susceptible to salt stress led to the identification of genes controlling tolerance under salt stress. Bluegrass diploid genome sequences were developed and used to find low ploidy potential ancestors to Kentucky bluegrass and Texas bluegrass that will enhance molecular marker development for salt and drought tolerance. An integrated molecular genetic linkage map was constructed for intermediate wheatgrass. The linkage map has identified regions of the genome responsible for vegetative regrowth, grain production, and biomass- related traits of this widely adapted and highly productive perennial grass. In another series of studies, use of genotype-by-sequencing allowed the development of a dense genetic map for flowering date in orchardgrass, and studies are ongoing to attach quantitative trait locus (QTL) controlling economically important traits to this map. Freezing evaluations of the orchardgrass lines were established. The association analysis of orchardgrass populations to identify genetic determinants of the late-flowering phenotype was completed. Highly significant single nucleotide polymorphism markers were found to be associated with late heading. Objective 6: Drafts of the Ecological Handbook chapters were completed (due out in 2018). A multiyear study that described different shrub reduction technologies and seedings with improved plant materials was completed. Analyzed vegetation data collected from 8 sites in Utah. Analyzed data collected at 4 study sites to determine the effects of mowing, herbicide, and burning on cheatgrass seed banks and perennial grass establishment. A study was completed that demonstrated shrub reduction leads to greater nitrogen availability on rangelands due to lower uptake by shrub and greater establishment of seeded grasses. Accomplishments 01 Understanding the interactions between plant establishment, soil nutrients, and rangeland restoration. ARS scientists in Logan, Utah, evaluated the responses of invasive weeds to concentrations of nitrogen and phosphate in addition to seasonal patterns of nutrient availability, root growth, and water-use efficiency on rangelands. Plant growth rates depended primarily on nitrogen acquisition from the soil and invasive weeds such as cheatgrass and medusahead acquired nitrogen earlier in the growing season than other rangeland plants. Soil nutrient depletion by invasive annuals prior to active perennial plant growth in the spring, a reduction in seedling establishment and plant growth was observed which resulted in ecosystems switching from a perennial dominated to an annual based ecosystem. Consequences of this are increased wildfire frequency, erosion, and decreased water shed capacity. Grasses, forbs, and shrubs developed far more rapid germination, increased seedling establishment, and plant persistence better synchronized their growth with nitrogen uptake more effectively in the spring. These results have influenced the selection of species used for restoration to include those that mimic invasive annuals through increased spring growth rates and different rooting depths which reduces or eliminates the invasion of weedy annuals in rangelands. 02 Salt and drought tolerant turfgrasses for the dry western U.S. Turfgrass is a $40 billion a year industry in the U.S., but its maintenance is associated with excessive water use. In the western U.S, high quality irrigation water can be restricted, and irrigation is increasingly sourced from saline recycled (effluent) water. ARS scientists in Logan, Utah, have identified turfgrass species and varieties within species that use less water, can thrive under lower quality saline water, and produce sufficient seed for utility in the commercial marketplace. Additionally, recent genomic methods were used to identify genetic and physiological mechanisms that respond to, and cause tolerance to, drought and salt stress. Plant materials identified as drought tolerant maintain green color and function as a turf with 30 to 50 percent less water, while those plant materials identified as salt tolerant can maintain color and function under a two-fold increase in salt content in irrigation water. These plant materials are incorporated into private turf breeding company�s cultivar development efforts and protocols used to screen for salt stress and tolerance in Kentucky bluegrass have been streamlined to include gene expression of water transporting genes. 03 Cold tolerant orchardgrass improves pasture production. Orchardgrass is a productive, nutritious forage that is used worldwide; however, it frequently winter kills and matures too early seasonally to make high nutritional quality grass/alfalfa hay. An ARS multi-disciplinary team of scientists in Logan, Utah, released Utah dryland orchardgrass (UTDG- 101) and Utah winter hardy orchardgrass (UTWH-101) plant materials as new gene sources for developing late-maturing orchardgrass while maintaining forage quality and winter tolerance. UTDG-101 possess comparatively greater crude protein, relative feed value, sugars, and other characteristics that make it superior to such cultivars as Benchmark Plus, Potomac, Paiute, and Seco. Additionally, UTDG-101 and UTWH-101 exhibits less winter injury than other orchardgrass cultivars, tall fescue, and perennial ryegrass. These characteristics make UTDG- 101 and UTWH-101 important sources of new genetically diverse orchardgrass germplasm for breeding and cultivar release in commercial breeding programs to increase pasture productivity. These plant materials are being utilized by plant breeding programs both public and private within the U.S. and internationally as new gene sources for winter hardy and late maturing orchardgrass development. 04 Enhanced winter grazing through cultivar development and research on tall statured forage kochia. Winter feeding can account for up to 70% of the annual costs of livestock production in the western U.S. These costs can be reduced by extended grazing into the fall and winter, but dormant grasses lack the protein needed for ruminants such as cattle. Forage kochia is a semi-shrub that has been seeded on rangelands for fall and winter forage, and previous research showed that the cultivar 'Immigrant' provided needed protein and reduced winter feed costs by 25 percent; however, it has been limited by poor establishment and short stature. 'Snowstorm' a new forage kochia cultivar was developed and released in 2012 by ARS scientists in Logan, Utah. In field comparisons to Immigrant, Snowstorm was 64 percent taller, produced 68 percent more forage, and had increased protein and digestibility. Snowstorm has quickly impacted private and public rangeland seedings, as evidenced by the Bureau of Land Management exclusively bidding for Snowstorm in the 2016 seed buy, purchasing 4000 pounds valued at $101,500.

Impacts
(N/A)

Publications

  • Cox, S., Peel, M., Creech, J.E., Waldron, B.L., Ean, J., Zobell, D.R., Miller, R.L., Snyder, D.L. 2017. Forage production of grass-legume binary mixtures on Intermountain Western USA irrigated pastures. Crop Science. 57:1742-1753.
  • Robins, J.G., Bushman, B.S., Feuerstein, U., Blase, G. 2016. Variation and correlations among European and North American orchardgrass germplasm for herbage yield and nutritive value. Agronomy. 6(4):61. doi:10.3390/ agronomy6040061.
  • Waldron, B.L., Peel, M., Larson, S.R., Mott, I.W., Creech, J.E. 2017. Tall fescue forage mass in a grass-legume mixture: predicted efficiency of indirect selection. Euphytica. 213:67. doi: 10.1007/s10681-017-1856-x.
  • Peel, M., Ransom, C.V., Mott, I.W. 2014. Natural glyphosate tolerance in sainfoin (onybrychis viciifolia). Crop Science. 53:2275-2282.
  • Peel, M., Ransom, C.V., Mott, I.W., Waldron, B.L. 2015. Natural glyphosate tolerance in sweetvetch Hedysarum boreale. Crop Science. 55:2368-2376.
  • Nelson, R.L., Peel, M., Ransom, C.V. 2014. Small burned response to spring and fall postemergence herbicide applications. Weed Technology. 28:168-175.
  • Noviandi, C.T., Eun, J.S., Peel, M., Waldron, B.L., Min, B.R., Zobell, D.R. , Miller, R.L. 2014. Effects of energy supplementation in pasture forages on in vitro ruminal fermentation characteristics in continuous cultures. Professional Animal Scientist. 30:13-22.
  • Noviandi, C.T., Neal, K., Eun, J.S., Peel, M., Waldron, B.L., Zobell, D.R., Bin, B.R. 2014. Comparison of alfalfa, birdsfoot trefoil, and cicer milkvetch in combination with 25, 50, or 75% tall fescue in a continuous- culture system. Professional Animal Scientist. 30:23-32.
  • Leffler, A.J., Monaco, T.A., James, J.J., Sheley, R.L. 2016. Importance of soil and plant community disturbance for establishment of Bromus tectorum in the Intermountain West, U.S. NeoBiota. 30:111-125.
  • Sriladda, C., Kratsch, H.A., Larson, S.R., Monaco, T.A., Shen, F., Kjelgren, R.K. 2016. Interspecific hybrid of xeric Shepherdia rotundifolia and riparian Shepherdia argentea: description, and traits suitable for low- water urban landscapes. HortScience. 51:822-828.
  • Hardegree, S.P., Jones, T.A., Roundy, B., Shaw, N., Monaco, T.A. 2016. Assessment of range planting as a conservation practice. Rangeland Ecology and Management. 69:237-247.
  • Morris, L.R., Monaco, T.A., Blank, R.R., Sheley, R.L. 2016. Cultivation legacies in soils after rehabilitation seeding in the Great Basin, USA. Arid Land Research and Management. 30:362-374.
  • Jones, T.A. 2016. Notice of release of Turkey Lake germplasm of bottlebrush squirreltail. Native Plant Journal. 17:59-63.
  • Bushman, B.S., Wang, L., Joshi, A., Robins, J.G., Johnson, P.G. 2016. Responses of tolerant and susceptible Kentucky bluegrass (Poa pratensis L.) germplasm to salt stress. Journal of the American Society for Horticultural Science. 141:449-456.
  • Jones, T.A., Johnson, D.A., Bushman, B.S., Connors, K.J., Smith, R.C. 2016. Seed dormancy mechanisms in basalt milkvetch and western prairie clover. Rangeland Ecology and Management. 69:117-122.
  • Broadhurst, L.M., Jones, T.A., Smith, F.S., North, T., Guja, L. 2016. Maximizing seed resources for restoration in an uncertain future. Bioscience. 66:73-79.
  • Robins, J.G., Jensen, K.B. 2017. Genotype by environment interaction effects of propagation and defoliation on meadow bromegrass. Crop Science. doi: 10.2135/cropsci2017.02.0072.
  • Jensen, K.B., Yan, X., Larson, S.R., Wang, R., Robins, J.G. 2016. Agronomic genetic diversity in intermediate wheatgrass [Thinopyrum intermedium). Plant Breeding. 135:751-758.
  • Robins, J.G., Bushman, B.S. 2016. Notice of release of 'Trailhead II' basin wildrye. Native Plant Journal. 17:273-280.
  • Robins, J.G., Bushman, B.S., West, M.S. 2017. Effects of selection for seedling vigor on the genetic variation in Leymus cinereus. Rangeland Ecology and Management. doi: 10.1016/j.rama.2017.01.002.
  • Cook, D., Gardner, D.R., Pfister, J.A., Stonecipher, C.A., Robins, J.G., Morgan, J.A. 2017. Effects of elevated CO2 on the swainsonine chemotypes of Astragalus lentiginosus and Astragalus mollissimus. Journal of Chemical Ecology. 43(3):307-316.
  • Smith, R.C., Waldron, B.L., Creech, J.E., Zobell, R.A., Zobell, D.R. 2016. Forage kochia and Russian wildrye potential for rehabilitating Gardner's saltbush ecosystems degraded by halogeton. Rangeland Ecology and Management. 69:390-398.
  • Joshi, A., Bushman, B.S., Pickett, B., Robbins, M.D., Staub, J.E., Johnson, P. 2016. Phylogenetic relationships among low ploidy Poa species using chloroplast sequences. Genome. doi: 10.1139/gen-2016-0110.
  • Stettler, J.M., Johnson, D.A., Bushman, B.S., Connors, K.J., Jones, T.A., Macadam, J.W. 2017. Utah lotus: North American legume for rangeland revegetation in southern Great Basin and Colorado Plateau. Rangeland Ecology and Management.
  • Stonecipher, C.A., Panter, K.E., Jensen, K.B., Rigby, C.W., Villalba, J.J. 2017. Seeding medusahead-invaded rangeland following mechanical disturbance on the channeled scablands of eastern Washington. Rangeland Ecology and Management. 70:388-395.
  • Monaco, T.A., Mangold, J., Mealor, B.A., Mealor, R.D., Brown, C. 2017. Downy brome control and impacts on perennial grass abundance: a systematic review spanning 64 years. Rangeland Ecology and Management. 70:396-404.
  • Fu, G., Dai, X., Symanzik, J., Bushman, B.S. 2017. Quantitative gene-gene and gene-environment mapping for leaf shape variation using tree-based models. New Phytologist. 213:455-469.
  • Wang, R., Larson, S.R., Jensen, K.B. 2017. Differential transferability of EST-SSR primers developed from diploid species Pseudoroegneria spicata, Thinopyrum bessarabicum, and Th. elongatum. Genome. 60(6):530-536.
  • Wang, R., Jensen, K.B. 2017. Roegneria alashanica Keng: a species with the StStStYStY genome constitution. Genome. 60(6):546-551.
  • Larson, S.R., Pearson, C., Jensen, K.B., Jones, T.A., Mott, I.W., Robbins, M.D., Staub, J.E., Waldron, B.L. 2017. Development and testing of cool- season grass species, varieties, and hybrids for biomass feedstock production in western North America. Agronomy. 7(1):3. doi:10.3390/ agronomy7010003.
  • Kantarski, T., Larson, S.R., Zhang, X., Dehaan, L., Anderson, J., Poland, J. 2016. Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing. Theoretical and Applied Genetics. 130:137-150.
  • Staub, J.E., Chatterton, N.J., Bushman, B.S., Johnson, D.A., Jones, T.A., Larson, S.R., Monaco, T.A., Robins, J.G. 2016. A history of plant improvement by the USDA-ARS Forage and Range Research Laboratory for rehabilitation of degraded western U.S. rangelands. Rangelands. 38:233-240.


Progress 10/01/15 to 09/30/16

Outputs
Progress Report Objectives (from AD-416): Objective 1: Improve pasture and rangeland management practices and forage nutritional quality through improved genetics for structure/ variation, stand establishment, forage quality, nutrient cycling and persistence characteristics for use on disturbed and semi-arid rangelands in the Great Basin and eastern Upper Mojave Desert, through collection, characterization, improvement and evaluation of grass, legume, and forb germplasm. (Objective C.2, NP 215 Action Plan) Objective 2: Develop grass, legume, forbs, and sub-shrub perennial germplasms/cultivars with increased stand establishment and persistence, seed production, and forage yield and quality on dry, harsh disturbed rangelands of the western US. (Objective C.2, NP 215 Action Plan) Objective 3. Develop breeding strategies and improved grass and legume germplasm for use on pastures and turf under low inputs in the Intermountain West. (Objective E.1, F.2, G.1, J.1, NP 215 Action Plan) Objective 4: Identify grass, legume, and sub-shrub species and mixtures that have increased forage biomass and quality for fall and winter grazing on semi-arid rangelands. (Objective A.1, C.2, NP 215 Action Plan) Objective 5: Identify and describe trait inheritance, quantitative trait loci (QTL), and association mapping for rhizome development, fall and winter forage yield and quality, salinity tolerance, winter hardiness, heading and flowering date, turf quality, and selenium and other heavy metal uptake for improved forages using genomic techniques. (Objective C. 2, NP 215 Action Plan) Objective 6: Develop integrated management strategies that decrease invasive weed seed banks, increase biodiversity through the establishment of grass, legume, forb mixtures, and develop plant mixtures that reduce wildfires on salt desert and sagebrush shrub lands in the Great Basin. (Objective B.1, NP Action Plan 215) Approach (from AD-416): The semi-arid and arid rangelands and irrigated pastures of the western U. S. provide a broad array of ecosystem services, including livestock forage, a diversity of native plants, pollinators, animals, and recreational activities. Many of these regions are classified as severely disturbed and non-productive. Moreover, based on predicted climate change models for semi-arid regions, environments will become hotter and drier, increasing the already high rate of rangeland and pasture degradation, resulting in the invasion of annual grasses, increasing wildfire frequency, and reducing forage productivity. Thus, in water-limiting environments, there is a need to develop grasses, legumes, and forbs that will establish under drought, compete with invasive weeds, and persist with adequate forage production and quality to meet the needs of wildlife and livestock producers throughout the year. Increasing digestibility in pasture grasses by 1% results in a 3% increase in livestock gains. The Forage and Range Research Lab (FRRL) combines the disciplines of plant breeding, molecular biology, and ecology in conducting experiments to better understand the genetic mechanisms and pathways of seedling establishment, persistence, competition, forage yield and quality, and other abiotic stresses to develop improved plant materials and management practices for use on these western U.S. rangelands and pastures. These plant materials and management strategies will improve sustainability by reducing the impact of wildfires and invasive weeds, improving wildlife habitat, and conserving, restoring, renovating, and reclaiming degraded landscapes. The Forage and Range Research Laboratory (FRRL) has six objectives, all of which fall under National Program 215, Component 5.1. "Develop and transfer economically viable and environmentally protective production and conservation practices, technologies, plant materials, and integrated management strategies." Progress on this project focuses on the development of improved germplasm for rangeland, pasture, and turf applications, and the identification of best management practices for sustainable agriculture in the western U.S. Objective 1: Morphology and/or genetic diversity of collections of sideoats (SO) and big galleta (BG) grasses, and rushy milkvetch (RV) were made in the Mojave Desert and Great Basin during 2012-014 (e.g., DNA assessment of SO and BG) or continued in 2015-2016 (e.g., morphological assessment of SO, BG, and RV). Hybrids made from selected sideoats and big galleta collections were transplanted at Mojave Desert and Logan, Utah research sites for observation and selection, and an increase of BG was made in preparation for continued evaluation directed towards germplasm release in 3 to 5 years. Objective 2: Evaluation and selection continued in populations of native legumes, alfalfa, fine and creeping red fescues, prairie junegrass, and native and introduced wheatgrasses and wildryes, and meadow bromegrass for increased plant establishment, stand persistence, and forage yield, as well as, increased tolerance to heat, salt, and drought, which are traits necessary to survive in increasingly hot/dry climates in the western U.S. A two-year comparative analysis was completed that assessed forage quality in crested wheat grass, forage kochia, small burnet, cicer milkvetch, and alfalfa for winter forage quality. Data indicate that legumes cicer milkvetch and small burnet maintain digestible fiber into November below 50% and 45%, respectively, and that protein into January in these legumes is typically above 11% and 10%, respectively. In Great Basin growing environments, these values exceeded those of alfalfa and wheatgrass indicating their potential value for winter forage to reduce livestock feeding costs. A five-year study to identify plant materials adapted to increased competition from invasive grasses such as cheatgrass and adaptations to fluctuations in temperature and precipitation was completed on semi-arid range sites near Beaver and Tintic, Utah, Cheyenne, Wyoming, and Malta, Idaho. Overall seedling establishment ranged from 28 to 70% seedling frequency at Tintic, Utah and Malta, Idaho, respectively. Although different species performed differently at various locations, four species (Siberian wheatgrass, crested wheatgrass, intermediate wheatgrass and Snake River wheatgrass) established better than the other grasses examined. In general, newer varieties possessed increased establishment compared to the older varieties. These results can assist land managers in making informed decisions concerning the choice of plant materials for revegetation projects as related to potential seedling establishment and stand persistence. Evaluation of improved FRRL plant materials in harsh, wildfire burned areas of Nevada has also identified native and non-native grass and legume species that have potential for improvement of degraded rangelands. Objective 3: Populations of tall fescue, orchardgrass, birdsfoot trefoil (irrigated pasture) and Kentucky bluegrass, wheatgrasses, and fine-leaved fescue (turf-grass) were selected for improved forage yield and quality (pasture) and quality and color (turf) under limited irrigation. Field evaluations continue to test the effectiveness of forage production in grass-legume mixtures comparing these to chemically fertilized monocultures. Turfgrass germplasm (i.e., bluegrasses, fine fescues, and wheatgrasses) were evaluated for drought and salt tolerance, and those plants having such were selected and intercrossed for continued progeny evaluation. The development of molecular markers in Kentucky bluegrass provides tools to quickly identify hybrids and measure the level of uniformity within the progeny. Thus, the FRRL continues to develop such tools to enhance the efficiency of selection for increased drought tolerance in this species. Objective 4: Continued evaluation and development (hybridization of exceptional plants) led to progress in the formation of unique intermediate and tall wheatgrass populations for further evaluation to identify plants having potential to improve rangeland fall and winter forage. A drought tolerant meadow bromegrass population was released that possesses improved forage yield and quality. Collaborative research with Sieben Land and Livestock ranch in Cascade Montana continues for the identification of a productive meadow bromegrass, intermediate wheatgrass, small burnet, and afalfa mixture for improvements in winter forage feeding management of cattle. Early results indicate that planting a mixture of intermediate wheatgrass and meadow brome more than doubled the forage yield and subsequent animal carrying capacity compared to the native range and orchardgrass/alfalfa mix typically used as winter forage. Another study evaluated the success of inter-seeding forage kochia into established wheatgrass stands, and measured the effect on forage mass, forage nutritive value, and grazing value as fall and winter forage. Forage kochia was successfully established using a two-pass chisel plow treatment to increase crude protein of the forage [8.8% compared to 4.5% for non-treated Conservation Reserve Program (CRP)] leading to increased stocking rate (1.6 Animal Unit Months (AUM)/acre compared to 0.5 AUM and for non-treated CRP) and grazing value (net return of $46.98/acre compared to $18.80 for non-treated CRP). Thus, inter-seeding of forage kochia into established CRP acreage can increase the potential for fall and winter grazing by livestock in the Great Basin. Objective 5: Experimentation continues to understand the genetic and physiological mechanisms responsible for yield and quality-related traits under salt and water stress in wildryes, orchardgrass, Kentucky bluegrass, alfalfa, and fine fescue. This research has identified unique plants and populations that have potential for rangeland, pasture, and turgrass low- input (water and fertilizer) applications. An integrated molecular genetic linkage map was constructed for intermediate wheatgrass. This linkage map provides a cornerstone for assembly of the USDOE-funded genome sequencing project that has identified regions of the genome responsible for vegetative regrowth, grain production, and biomass- related traits of this widely adapted and highly productive perennial grass. In another series of studies, use of genotype-by-sequencing DNA technologies has allowed for the development of a dense genetic map identifying flowering date in orchardgrass. Studies are also ongoing to define and locate quantitative trait loci (QTL) controlling other economically important traits on this map, which will provide further elucidation of major genes contributing to this economically important trait. Additionally, a whole transcriptome study of Kentucky bluegrass breeding lines expression of tolerant and susceptible to salt stress led to the identification of genes controlling tolerance under salt stress. Objective 6: Wildfire resilient perennial shrubs and grasses are used in greenstrips to control fire spread and reduce its negative ecological impact. Progress continues to define improved fire resilient grasses (wheatgrasses and fescue grasses) and shurbs (forage kochia) that act to reduce wildfire spread. Genetically improved shrub and grass combinations were subjected to simulated wildfire pressure in 2015 and evaluated in 2016 at two Great Basin locations. Some grasses (fine- leaved fescue and wheatgrasses) were identified that regrew after the fire treatment. In another study, a fine-leaved fescue grass was identified that remained green (fire resilient) throughout the summer season, and, thus, has potential for greenstrip applications. Additionally, a meta-analysis (comprehensive) was conducted on cheatgrass control treatments and shrub reduction methodologies, and an analysis was performed to determine the effects of mowing, herbicide, and burning on cheatgrass seed banks and perennial grass establishment. These analyses identified new management techniques and/or improved existing management practices for restoration of degraded sagebrush communities depending on their ecological site history. Accomplishments 01 Improved crested wheatgrass improves rangeland productivity. There is a need to provide improved plant materials to enhance rangeland productivity on harsh (low annual precipitation) sites in the western U. S. Crested wheat grass cultivar ForageCrest was released by ARS scientists in Logan, Utah, to improve productivity on rangelands receiving 200 to 300 mm (8-12 inches) of annual precipitation. ForageCrest will establish and persist over time providing adequate dry- matter yields with nutritional characteristics similar to or greater than current crested wheatgrass cultivars used in the Intermountain West, Great Basin and Northern Great Plains Regions of the western U.S. ForageCrest seedlings do not spread beyond original plantings, and do not cross with native species. ForageCrest resists the spread of invasive annual weed species such as cheatgrass, and medusahead rye because it germinates earlier and grows more rapidly at colder temperatures than other perennial grasses. Moreover, when inter-seeded into native stands, ForageCrest co-exists with native grasses, forbs, and shrubs. 02 Native slender wheatgrass possesses improved rangeland stand establishment charateristics. Vast areas of semi-arid rangelands in the western U.S., particularly in the Great Basin, are severely disturbed, frequently burned, increasingly eroded, and subsequently infested with troublesome weeds such as cheatgrass, and medusahead rye. In such areas of limited annual precipitation, native grasses are more difficult to establish, less productive and persistent, and less defoliation-tolerant under severe water stress than their introduced counterparts. Thus, it is critical to develop native grasses that can be seeded onto these disturbed harsh range sites that are competitive against invasive weeds, easy to establish, persistent, with increased seed yield. Slender wheatgrass is a native, self-pollinating, short- lived, early serial, perennial species that colonizes degraded landscapes. Because of its abundant rhizome (underground plant stem), ARS scientists at Logan, Utah, released Charleston Peak slender wheatgrass germplasm as an improved alternative to current slender wheatgrass cultivars (e.g., FirstStrike, Revenue, Pryor, and San Luis) for conservation (erosion control) and re-vegetation (reclamation) plantings on arid and semi-arid rangelands for the Great Basin and Intermountain Regions of western U.S. for erosion control and reclamation. Charleston Peak germplasm is adapted to elevations ranging from 1,385 m (4,500 ft) to 3,692 m (12,000 ft), prefers loams and sandy loams, and can tolerate salinity ranges from 1 to 16 milliZMhos per centimeter (mmhos cm-1), where it is surpassed in this trait only by tall wheatgrass. 03 Improved native basin wildrye germinates rapidly to improved stand establishment. Many areas of the western U.S. have been severely degraded by human disturbance, wildfires, and the invasion of weedy annual plant species (e.g., cheatgrass, medusahead rye). Thus, there is a need to identify and cultivate plant materials that establish and persist on degraded landscapes. Relatively tall (3 to 6 feet) Basin wildrye grass is ideal for providing wind protection in winter calving pastures, holds its nutrient value well at maturity (7-8% protein), and can withstand heavy grazing and trampling in its dormant state. Moreover, as a bunch type grass, basin wildrye is well adapted to stabilizing disturbed soils, is drought tolerant, possesses a fibrous root system, and has adequate seedling vigor in areas receiving 8 to 20 inches of annual precipitation. These characteristics make it a desirable plant material for reclamation. ARS scientists at Logan, Utah, released Trailhead II basin wildrye because of its improved stand establishment potential (rapid emergence), which enhances the success of conservation and re-vegetation plantings in the Intermountain West and Northern Great Plains areas of the United States. 04 First release of native Thurber's needlegrass increases rangeland biodiversity. As a result of large-scale planting of non-native grasses (i.e., crested wheatgrass) in the early part of the 19th Century, many western U.S. landscapes have decreased in biodiversity. There is a need to increase the genetic diversity of such regions during landscape revegetation after disturbances (e.g., wildfire and human disturbance) by seeding native grass and legume species. For instance, native Thurber�s needlegrass is a densely tufted bunchgrass (12 to 24 inches tall)that provides valuable forage for livestock and wildlife. This grass is found in the semiarid Intermountain West from southern Idaho to Washington's Columbia Basin and south to eastern California and northern Nevada and Utah in association with juniper, sagebrush, saltbush, horsebrush, bitterbrush, winterfat, Sandberg bluegrass, Indian ricegrass, bluebunch wheatgrass and thickspike wheatgrass plant communities. However, this species is not commercially available, and therefore, ARS scientists at Logan, Utah, released Princeton Thurber�s needlegrass germplasm for revegetation of degraded sites.

Impacts
(N/A)

Publications

  • Hwang, J., Oh, J., Kim, Z., Staub, J.E., Chung, S., Park, Y. 2015. Fine genetic mapping of a locus controlling short internode length in melon (Cucumis melo L.). Molecular Breeding. doi: 10.1007/S.11032-014-0088-1.
  • Staub, J.E., Gordon, V.S., Simon, P.W., Wehner, T.C. 2015. Chilling tolerant U.S. processing cucumber (Cucumis sativus L.): three advanced backcross and ten inbred backcross lines. HortScience. 50:1252-1254.
  • Johnson, D.A., Bushman, B.S., Connors, K.J., Bhattarai, K., Jones, T.A., Jensen, K.B., Parr, S.D., Eldredge, E.P. 2015. Notice of release of Fanny Germplasm, Carmel Germplasm, and Bonneville Germplasm Searls' prairie clover: Selected class of natural germplasm. Native Plant Journal. 16:265- 275.
  • Bushman, B.S., Johnson, D.A., Connors, K.J., Jones, T.A. 2015. Germination and seedling emergence of three western North American rangeland legumes. Rangeland Ecology and Management. 68:501-506.
  • Rong, Y., Ma, L., Johnson, D.A. 2015. Methane uptake by four land-use types in the agro-pastoral region of northern China. Atmospheric Environment. 116:12-21.
  • Rong, Y., Ma, L., Johnson, D.A., Yuan, F. 2015. Soil respiration patterns for four major land-use types of the agro-pastoral region of northern China. Agriculture, Ecosystems and Environment. 213:142-150.
  • Rong, Y., Li, H., Johnson, D.A. 2016. Germination response of Apocynum venetum seeds to temperature and water potential. Journal of Applied Botany. 88:202-208.
  • Jensen, K.B., Larson, S.R., Bushman, B.S., Robins, J.G. 2016. Notice of release of Charleston Peak Germplasm: selected class, genetically manipulated track pre-variety germplasm. Native Plant Journal. 17:127-133.
  • Jensen, K.B., Robins, J.G., Rigby, C.W., Waldron, B.L. 2016. Comparative trends in forage nutritional quality across the growing season in thirteen grasses. Canadian Journal of Plant Science. doi: 10.1139/cjps2015-3208.
  • Robins, J.G., Jensen, K.B., Bushman, B.S. 2015. Notice of release of 'Bannock II' thickspike wheatgrass. Native Plant Journal. 16:259-264.
  • Bushman, B.S., Amundsen, K.L., Warnke, S.E., Robins, J.G., Johnson, P.G. 2016. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress. BMC Genomics. 17:48. doi: 10.1186/ s12864-016-2379-x.
  • Carlsen, M., Fu, G., Bushman, B.S., Corcoran, C. 2015. An integrated approach to exploit linkage disequilibrium for ultra high dimensional genome-wide data. PLoS Genetics. 202:411-426.
  • Dehaan, L.R., Van Tassel, D.L., Anderson, J.A., Asselin, S.R., Barnes, R., Baute, G.J., Cattani, D.J., Culman, S.W., Dorn, K.M., Hulke, B.S., Kantar, M., Larson, S., Marks, M.D., Miller, A.J., Poland, J., Ravetta, D.A., Rude, E., Ryan, M.R., Wyse, D., Zhang, X. 2016. A pipeline strategy for grain crop domestication. Crop Science. 56:917-930.
  • Robins, J.G. 2016. Evaluation of warm-season grass nutritive value as an alternative to cool-season grass under limited irrigation in the semi-arid western United States. Grassland Science. 62:144-150.
  • Robins, J.G., Lovatt, J.A. 2015. Cultivar by environment effects of perennial ryegrass cultivars selected for high water soluble carbohydrates managed under differing precipitation levels. Euphytica. 208:571-581.
  • Anower, M.R., Boe, A., Auger, D., Mott, I.W., Peel, M., Wu, Y. 2015. Comparative drought response in eleven diverse alfalfa accessions. Journal of Agronomy and Crop Science. doi: 10.1111/jac.12156.
  • Wang, Z., Johnson, D.A., Rong, Y., Wang, K. 2016. Grazing effects on soil characteristics and vegetation of grassland in northern China. Solid Earth. 7:55-65.
  • Mott, I.W., Cook, D., Lee, S.T., Stonecipher, C.A., Panter, K.E. 2016. Phylogenetic examination of two chemotypes of Lupinus leucophyllus. Biochemical Systematics and Ecology. 65:57-65.
  • Namhui, K., Oh, J., Kim, B., Choi, E., Hwang, U., Staub, J.E., Chung, S., Park, Y. 2015. The gene CmACS-7 provides sequence variation for the development of DNA markers associated with monoecious sex expresion in melon (Cucumis melo L.). Korean Society of Horticulture Science Journal. 56:535-545.
  • Jones, T.A., Mott, I.W. 2016. Notice of release of Columbia Germplasm of bluebunch wheatgrass. Native Plant Journal. 17:53-58.
  • Anower, M.R., Fennell, A., Boe, A., Mott, I.W., Peel, M., Wu, Y. 2016. Physiological and molecular characterization of lucerne (Medicago sativa L. ) germplasm with improved seedling freezing tolerance. Crop and Pasture Science. 67:655-665.
  • Chivers, I.H., Jones, T.A., Broadhurst, L.M., Larson, S.R., Mott, I.W. 2016. The merits of artificial selection for the development of restoration-ready plant materials of native perennial grasses. Restoration Ecology. 24:174-183.
  • Robbins, M.D., Staub, J.E., Bushman, B.S. 2016. Development of fine-leaved Festuca grass populations identified genetic resources having potential for improved forage production and wildfire control in the western United States. Euphytica. doi: 10.1007/s10681-016-1644-z.


Progress 10/01/14 to 09/30/15

Outputs
Progress Report Objectives (from AD-416): Objective 1: Improve pasture and rangeland management practices and forage nutritional quality through improved genetics for structure/ variation, stand establishment, forage quality, nutrient cycling and persistence characteristics for use on disturbed and semi-arid rangelands in the Great Basin and eastern Upper Mojave Desert, through collection, characterization, improvement and evaluation of grass, legume, and forb germplasm. (Objective C.2, NP 215 Action Plan) Objective 2: Develop grass, legume, forbs, and sub-shrub perennial germplasms/cultivars with increased stand establishment and persistence, seed production, and forage yield and quality on dry, harsh disturbed rangelands of the western US. (Objective C.2, NP 215 Action Plan) Objective 3. Develop breeding strategies and improved grass and legume germplasm for use on pastures and turf under low inputs in the Intermountain West. (Objective E.1, F.2, G.1, J.1, NP 215 Action Plan) Objective 4: Identify grass, legume, and sub-shrub species and mixtures that have increased forage biomass and quality for fall and winter grazing on semi-arid rangelands. (Objective A.1, C.2, NP 215 Action Plan) Objective 5: Identify and describe trait inheritance, quantitative trait loci (QTL), and association mapping for rhizome development, fall and winter forage yield and quality, salinity tolerance, winter hardiness, heading and flowering date, turf quality, and selenium and other heavy metal uptake for improved forages using genomic techniques. (Objective C. 2, NP 215 Action Plan) Objective 6: Develop integrated management strategies that decrease invasive weed seed banks, increase biodiversity through the establishment of grass, legume, forb mixtures, and develop plant mixtures that reduce wildfires on salt desert and sagebrush shrub lands in the Great Basin. (Objective B.1, NP Action Plan 215) Approach (from AD-416): The semi-arid and arid rangelands and irrigated pastures of the western U. S. provide a broad array of ecosystem services, including livestock forage, a diversity of native plants, pollinators, animals, and recreational activities. Many of these regions are classified as severely disturbed and non-productive. Moreover, based on predicted climate change models for semi-arid regions, environments will become hotter and drier, increasing the already high rate of rangeland and pasture degradation, resulting in the invasion of annual grasses, increasing wildfire frequency, and reducing forage productivity. Thus, in water-limiting environments, there is a need to develop grasses, legumes, and forbs that will establish under drought, compete with invasive weeds, and persist with adequate forage production and quality to meet the needs of wildlife and livestock producers throughout the year. Increasing digestibility in pasture grasses by 1% results in a 3% increase in livestock gains. The Forage and Range Research Lab (FRRL) combines the disciplines of plant breeding, molecular biology, and ecology in conducting experiments to better understand the genetic mechanisms and pathways of seedling establishment, persistence, competition, forage yield and quality, and other abiotic stresses to develop improved plant materials and management practices for use on these western U.S. rangelands and pastures. These plant materials and management strategies will improve sustainability by reducing the impact of wildfires and invasive weeds, improving wildlife habitat, and conserving, restoring, renovating, and reclaiming degraded landscapes. The Forage and Range Research Laboratory (FRRL) focuses on the development of improved germplasm for rangeland, pasture, and turf applications, and the identification of best management practices for sustainable agriculture in the western U.S. Objective 1: Collections of sideoats gramma, big galleta grass, and rushy milkvetch were made from the Mojave Desert and Great Basin, and laboratory (DNA analysis)- and field-based (morphological) evaluations of collections (sideoats gramma, big galleta grass, Utah trefoil, and Lewis flax) were continued and intermatings were made among sideoats grama and big galleta collections for use in rehabilitation of the Mojave. Objective 2: Evaluation and selection continued to improve native legumes, alfalfa, fine fescues, and both native and introduced wheatgrasses and wildryes for plant establishment, rhizome development, salt tolerance, and persistence in the increasingly hot/dry climates of the Great Basin. Forage kochia was evaluated and found to establish and compete on halogeton-dominated saline rangelands, whereas, the displaced native Gardner saltbush did not establish or persist. It was determined that breeding for salt tolerance in alfalfa successfully improved its performance in saline environments, but changed plant morphology and reduced its performance in non-saline conditions. A new thickspike wheatgrass cultivar was released with improved seed production and seedling establishment. Three germplasms of native legumes were released and provide unique seed sources and planting guidelines for their use in rangeland restoration. A new meadow bromegrass �Arsenal� that was selected for forage yield and nutritional quality under limited to no- irrigation was released and is expected to provide farmers/ranchers with additional options for high quality forage. Objective 3: Progress was made in the genetic improvement of pasture plants (tall fescue, orchardgrass, birdsfoot trefoil) and turfgrasses (Kentucky bluegrass, wheatgrasses, and fine-leaved fescue) for improved forage yield and quality (pasture) and quality and color (turf) under limited irrigation. Field evaluations to test the effectiveness of forage production in grass-legume mixtures compared to chemically fertilized monocultures were completed. Turfgrass (i.e., bluegrasses, fine fescues, and wheatgrasses) germplasm with improved drought or salt tolerance was selected under reduced water regimes. Objective 4: Work continues to develop and evaluate meadow bromegrass, intermediate and tall wheatgrasses for fall and winter forage. Based on fall forage yield and quality, populations of meadow bromegrass, intermediate and tall wheatgrass were advanced for continued improvement. In a collaborative study located at the Sieben Land and Livestock ranch, Cascade, Montana, meadow bromegrass, intermediate wheatgrass, small burnet, and alfalfa mixtures were examined as 1,009 cows were grazed for two days on a 33-acres in February of 2015. Based on an animal�s consumption estimate of 30 lbs of forage a day, 30,270 lbs of forage were grazed each day for a total of 60,540 lbs (~ 30 tons of forage consumed). Given these estimates, the rancher estimated that he saved nearly $1,800 over the two days of grazing compared to the purchase of hay. Objective 5: Significant progress was made in understanding the genetic and physiological mechanisms responsible for yield and quality-related traits under salt and water stress in wildryes, orchardgrass, Kentucky bluegrass, alfalfa, and fine fescue. Molecular marker development, genetic mapping, assessments of gene expression, and elucidation of physiological mechanisms continued to determine the bases of wheatgrass vegetative growth and regrowth, alfalfa and bluegrass salt tolerance, orchardgrass late flowering and carbohydrate accumulation, spreading-type growth habit of alfalfa, and fine fescue yield and quality. Genes and chromosome regions associated with potentially toxic accumulations of arsenic, cadmium, copper, molybdenum, lead, and zinc in native perennial grasses grown on soil from an EPA Superfund site in Montana were identified. Objective 6: Three specific studies were initiated using the Utah Land Treatment database that was created by FRRL scientists in conjunction with project cooperators. First, the influence of three conifer reduction treatments influence seeding success and recovery on herbaceous vegetation were assessed on 68 sites (pinyon and juniper). Second, three shrub reduction treatments were studied to determine how they alter plant community succession and assist the establishment of 16 improved FRRL plant materials on 99 sagebrush sites. Lastly, after compiling a complete dataset (1982-2013), analysis of wildfire-impacted areas was initiated to determine how different ecological sites recover from disturbance and respond to post-fire seeding efforts. Accomplishments 01 Drought tolerant meadow bromegrass improves rangeland production. Even though there is increasing interest in utilizing less productive agricultural lands (i.e., associated with increased drought, soil salinity, and low fertility) for grazing in the western U.S., it is difficult to establish grasses in these harsh environments. Thus, there is a critical need for winter hardy, early maturing grasses that establish rapidly and provide highly nutritional forage on western U.S. semiarid rangelands and non-irrigated pastures. However, ARS researchers at Logan, Utah, released a drought tolerant, winter hardy meadow bromegrass cultivar Arsenal. On rangelands receiving between 250 (9.5 inches) to 450 (17.7 inches) mm of annual precipitation, Arsenal had 32% more seedlings establish than did meadow bromegrass cultivars Cache and Regar. Under similar conditions, Arsenal averaged 14, 66, and 5% increase in forage production over cultivars Cache, Regar, and MacBeth. Spring forage crude protein and digestibility were 17 and 12% greater than Cache and fiber 6% lower. Arsenal (Plant Variety Protection No. 201500355) expands the use of meadow bromegrass from irrigated pastures to nonirrigated pastures and rangelands with =250 mm annual precipitation, providing livestock producers with high-yielding nutritious forage where less nutritious and lower yielding grasses were typically used. 02 Thickspike wheatgrass with improved seedling establishment and seed yield. Restoration of degraded landscapes, including frequent fires, in the western U.S. is costly and labor intensive. Native thickspike wheatgrass is a popular rangeland restoration species. However, its comparatively poor seedling establishment and seed production characteristics have limited its commercialization and use in rangeland restoration. ARS scientists at Logan, Utah, developed and released Bannock II thickspike wheatgrass. Bannock II had 23, 73, 94, 95, and 98% more seedlings established on rangelands of the Great Basin than cultivars Bannock, Schendimar, Critana, Sodar, and Elbee. Bannock II produced 17, 129, and 185% more seeds than Bannock, Critana, and Sodar. Its improved seed yield lowers commercial production costs and its improved stand establishment characteristics enhance its restoration utility. 03 Adaptation of bluebunch wheatgrass to low-precipitation zones improves rangeland restoration on the Columbia Plateau, Washington. There is a need for native grass species that can be utilized for restoration of degraded landscapes in drought-prone regions of the western U.S. Perennial native bluebunch wheatgrass is broadly adapted to differing ecological habitats, and is an important forage for livestock and native wildlife. Nevertheless, drought tolerant commercial bluebunch wheatgrass adapted specifically to Columbia Plateau and other nearby regions (i.e., Level III Ecoregion 10) in eastern Washington has not been previously identified and developed for commercial use. ARS scientists at the Forage and Range Research Unit in Logan, Utah, released a pre-variety bluebunch wheatgrass germplasm designated as Columbia, which originated from a dry site [250 mm (9.8 inches)] on the Columbia Plateau region in Adams County, Washington, which contrasts dramatically from other similar germplasm releases originating from wetter sites {i.e., Anatone [504 mm (19.8 inches, Whitmar [549 mm (21.6 inches)], and Goldar [598 mm (23.5 inches)]}. Seedling establishment and biomass production of Columbia is improved over these commercial germplasms as demonstrated in harsh dry trail sites at Malta Idaho and Nephi Utah, and was, thus, released for use in the Columbia Plateau region to improve rangeland productivity. 04 Native forbs improve rangeland biodiversity and pollinator efficiency on semiarid western U.S. rangelands. There is a critical need for forb species to provide greater biodiversity, food, and habitat resources for native pollinators, birds (including sage-grouse), and wildlife in the Great Basin and Colorado Plateau Regions of the western U.S. However, few commercial seed sources of North American forbs are available for revegetation/restoration of degraded western rangelands adapted to precipitation zones having less than 350 mm (13.8 inches) annual precipitation, and those that are available come from wildland- collected seed. The amount of time and resources necessary to make wildland collections in quantity results in high seed prices and variable seed quality, such that forbs have been under-represented in rangeland seeding mixes. Thus, ARS scientists at Logan, Utah, released pre-variety germplasms of native Searl�s prairie clover designated as Fanny, Bonneville, and Carmel for commercial use in rangeland restoration. These germplasms are adapted to differing habitats with variable annual precipitations {i.e., Bonneville [178 mm (7.0 inches)], Fanny [321 mm (12.6 inches), and Carmel [347 mm (13.6 inches)]}, and provide a genetically diverse array of Searl�s prairie clover genotypes that biologically fix nitrogen as well as provide high quality food for wildlife and native pollinators. This germplasm represents the first commercially available seed source for use in rangeland restoration.

Impacts
(N/A)

Publications

  • Zhu, L., Johnson, D.A., Wang, W., Ma, L., Rong, Y. 2015. Grazing effects on carbon fluxes in a northern China grassland. Journal of Arid Environments. 114:41-48.
  • Deng, C.L., Bai, L.L., Li, S.F., Zhang, Y.X., Li, X., Chen, Y.H., Wang, R., Han, F.P., Hu, Z.M. 2014. DOP-PCR-based chromosome painting of rye (Secale cereale) and wheat-rye hybrid 1R and 1RS chromosomes. Genome. 57:473-479.
  • Rong, Y., Yuan, F., Johnson, D.A. 2014. Addition of alfalfa (Medicago sativa L.) to lamb diets enhances production and profits in northern China. Livestock Research for Rural Development. 26:224.
  • Asjad, A., Bang, S.W., Chung, S., Staub, J.E. 2014. Plant transformation via pollen tube-mediated gene transfer. Plant Molecular Biology Reporter. 33:742-747.
  • Yun, L., Larson, S.R., Jensen, K.B., Staub, J.E., Grossl, P.R. 2015. Genes and quantitative trait loci (QTL) controlling trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals. Plant and Soil. doi: 10.1007/s11104-015-2583-5.
  • Jensen, K.B., Robins, J.G., Bushman, B.S., Johnson, D.A., Stratton, S.D., Heaton, K. 2014. UTDG -101, a late-maturing orchardgrass germplasm with increased winter hardiness and forage quality. Journal of Plant Registrations. 8:318-323.
  • Jensen, K.B., Singh, D., Bushman, B.S., Robins, J.G. 2015. Registration of Arsenal meadow bromegrass. Journal of Plant Registrations. doi: 10.3198/ jpr2015.03.0018crc.
  • Jones, T.A., Monaco, T.A., Rigby, C.W. 2015. The potential of novel native plant materials for the restoration of novel ecosystems. Elementa: Science of the Anthropocene. doi: 10.12952/journal.elementa.000047.
  • Wang, R., Larson, S.R., Jensen, K.B., Bushman, B.S., Dehaan, L.R., Wang, S. , Yan, X. 2015. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species. Genome. 58:63-70.
  • Staub, J.E., Robbins, M.D., Ma, Y., Johnson, P.G. 2014. Phenotypic and genotypic analysis of a U.S. native fine-leaved Festuca population portends its potential use for low-input urban landscapes. Journal of the American Society for Horticultural Science. 139:706-715.
  • Hirsch, M.C., Monaco, T.A., Call, C.A., Sheley, R.L. 2014. Large-scale downy brome treatments alter plant-soil relationships and promote perennial grasses in salt desert shrublands. Rangeland Ecology and Management. 67:255-265.
  • Xie, W., Bushman, B.S., Ma, Y., West, M.S., Robins, J.G., Michaels, L.A., Jensen, K.B., Zhang, X., Casler, M.D., Stratton, S.D. 2014. Genetic diversity and variation in North American orchardgrass (Dactylis glomerata L.) cultivars and breeding lines. Grassland Science. 60:185-193.
  • Pearson, C.H., Larson, S.R., Keske, C.M., Jensen, K.B. 2015. Native grasses for biomass production at high elevations. In: Cruz, V.M.Z., and Dierig, D.A., editors. Industrial Crops Breeding for Bioenergy and Bioproducts. New York, NY:Springer. p. 101-132.
  • Robins, J.G., Bushman, B.S., Jensen, K.B., Escribano, S., Blaser, G. 2014. Genetic variation for dry matter yield, forage quality, and seed traits among the half-sib progency of nine orchardgrass germplasm. Crop Science. 55:275-283.
  • Leffler, A.J., James, J.J., Monaco, T.A., Sheley, R.L. 2015. A new perspective on trait differences between native and invasive exotic plants: reply to critique. Ecology. 96(4):1152-1153.
  • Sriladda, C., Kjelgren, R., Kratsch, H., Larson, S.R., Monaco, T.A. 2014. Ecological adaptation of Shepherdia rotundifolia to conditions in its native range. Western North American Naturalist. 74:79-91.
  • Robins, J.G., Bushman, B.S., Escribano, S., Jensen, K.B. 2015. Heterosis for protein, digestibility, fiber, and water soluble carbohydrates in nine sources of orchardgrass germplasm. Euphytica. 204:503-511.
  • Li, X., Alarcon-Zuniga, B., Kang, J., Tahir, M., Jiang, Q., Wei, Y., Reyno, R., Robins, J.G., Brummer, E. 2015. Mapping fall dormancy and winter injury in tetraploid alfalfa (Medicago sativa L.). Crop Science. 55:1-17.
  • Monaco, T.A., Leffler, A.J., James, J.J. 2012. Differences in nitrogen uptake capacity between native and invasive grasses is dependent on temperature. Oecologia. 171:51-60.
  • Morris, L.R., Monaco, T.A., Call, C.A., Sheley, R.L., Ralphs, M.H. 2011. Implementing ecologically based invasive plant management: Lessons from a century of demonstration projects in Park Valley, Utah. Rangelands. 33:2-9.
  • Vogel, K.P., Mitchell, R., Waldron, B.L., Haferkamp, M.R., Berdahl, J.D., Erickson, G., Klopfenstein, T. 2014. Registration of 'Newell' Smooth Bromegrass. Journal of Plant Registrations. 9:35-40.


Progress 10/01/13 to 09/30/14

Outputs
Progress Report Objectives (from AD-416): Objective 1: Improve pasture and rangeland management practices and forage nutritional quality through improved genetics for structure/ variation, stand establishment, forage quality, nutrient cycling and persistence characteristics for use on disturbed and semi-arid rangelands in the Great Basin and eastern Upper Mojave Desert, through collection, characterization, improvement and evaluation of grass, legume, and forb germplasm. (Objective C.2, NP 215 Action Plan) Objective 2: Develop grass, legume, forbs, and sub-shrub perennial germplasms/cultivars with increased stand establishment and persistence, seed production, and forage yield and quality on dry, harsh disturbed rangelands of the western US. (Objective C.2, NP 215 Action Plan) Objective 3. Develop breeding strategies and improved grass and legume germplasm for use on pastures and turf under low inputs in the Intermountain West. (Objective E.1, F.2, G.1, J.1, NP 215 Action Plan) Objective 4: Identify grass, legume, and sub-shrub species and mixtures that have increased forage biomass and quality for fall and winter grazing on semi-arid rangelands. (Objective A.1, C.2, NP 215 Action Plan) Objective 5: Identify and describe trait inheritance, quantitative trait loci (QTL), and association mapping for rhizome development, fall and winter forage yield and quality, salinity tolerance, winter hardiness, heading and flowering date, turf quality, and selenium and other heavy metal uptake for improved forages using genomic techniques. (Objective C. 2, NP 215 Action Plan) Objective 6: Develop integrated management strategies that decrease invasive weed seed banks, increase biodiversity through the establishment of grass, legume, forb mixtures, and develop plant mixtures that reduce wildfires on salt desert and sagebrush shrub lands in the Great Basin. (Objective B.1, NP Action Plan 215) Approach (from AD-416): The semi-arid and arid rangelands and irrigated pastures of the western U. S. provide a broad array of ecosystem services, including livestock forage, a diversity of native plants, pollinators, animals, and recreational activities. Many of these regions are classified as severely disturbed and non-productive. Moreover, based on predicted climate change models for semi-arid regions, environments will become hotter and drier, increasing the already high rate of rangeland and pasture degradation, resulting in the invasion of annual grasses, increasing wildfire frequency, and reducing forage productivity. Thus, in water-limiting environments, there is a need to develop grasses, legumes, and forbs that will establish under drought, compete with invasive weeds, and persist with adequate forage production and quality to meet the needs of wildlife and livestock producers throughout the year. Increasing digestibility in pasture grasses by 1% results in a 3% increase in livestock gains. The Forage and Range Research Lab (FRRL) combines the disciplines of plant breeding, molecular biology, and ecology in conducting experiments to better understand the genetic mechanisms and pathways of seedling establishment, persistence, competition, forage yield and quality, and other abiotic stresses to develop improved plant materials and management practices for use on these western U.S. rangelands and pastures. These plant materials and management strategies will improve sustainability by reducing the impact of wildfires and invasive weeds, improving wildlife habitat, and conserving, restoring, renovating, and reclaiming degraded landscapes. The Forage and Range Research Laboratory (FRRL) focuses on the development of improved germplasm for rangeland, pasture, and turf applications, and the identification of best management practices for sustainable agriculture in the western U.S. For Objective 1, collections of sideoats gramma, big galleta grass, Utah trefoil, and Lewis flax were made from the Mojave Desert and Great Basin, and laboratory- and field- based evaluations (Utah trefoil, Lewis flax) and intermatings (sideoats gramma) were initiated. For Objective 2, forage evaluation and selection continued to improve wheatgrasses, wildryes, meadow brome, and fine fescues and native legumes for plant establishment, rhizome development, salt tolerance, and persistence in the increasingly hot/dry climates of the Great Basin. Forage kochia was evaluated and selected for its seedling vigor, survival, and seed production to extend grazing under harsh saline conditions in degraded weed-infested rangelands. Progress in Objective 3 was made in the genetic improvement of pasture plants (tall fescue, orchardgrass, birdsfoot trefoil) and turfgrasses (Kentucky bluegrass, wheatgrasses, and fine-leaved fescue) for improved nutrition (pasture) and/or performance (pasture and turf) under low input applications. Field evaluations to test the effectiveness of biomass production in grass-legume mixtures compared to chemically fertilized monocultures were completed. Turfgrass (i.e., bluegrasses, fine fescues, and wheatgrasses) evaluations continued to identify germplasm possessing stress tolerance (i.e., color and growth) under reduced water regimes (50% normal applicaton). For Objective 4, yield and nutritional quality evaluation of meadow bromegrass, orchardgrass, intermediate and tall wheatgrasses in mixes with legumes (e.g., small burnet and alfalfa) to reduce the need to mechanically harvest hay and improve winter forage quality were conducted in Cascade, MT, Cheyenne, WY, and Logan, UT. Significant progress in Objective 5, was made in understanding the genetic and physiological mechanisms responsible for yield and quality- related traits under salt and water stress in wildryes, orchardgrass, Kentucky bluegrass, and alfalfa. Molecular marker development, genetic mapping, and assessments of gene expression continued to determine the genetic bases of wheatgrass vegetative growth and regrowth, forage kochia seed viability, alfalfa and bluegrass salt tolerance, and orchardgrass late flowering and carbohydrate accumulation. The genetic map locations of genes controlling late flowering in orchardgrass, rhizome development (spreading) in wildryes, salt tolerance and spreading growth habit in alfalfa, and the accumulation of heavy metals in forage grasses grown on contaminated soils were determined. For Objective 6, data from 700 Utah shrubland sites that have been subjected to various rangeland repair strategies since 1980 were analyzed and used to identify treatments [e.g., shrub cutting, chaining or dragging of rangeland to reduce vegetation, and plant shredding to reduce juniper stands for reduction of shrub dominance (sagebrush and juniper)] to improve animal grazing potential and big game habitat suitability. Landscape scale studies continue that evaluate the interaction between plant establishment and competition of improved plant materials with the invasive weed cheatgrass as affected by mowing, burning, and herbicide applications. Accomplishments 01 Rangeland restoration through improved management strategies. Recent high costs of nitrogen fertilizer and the need for increased environmental stewardship necessitate a renewal of the mixed grass- legume pastures. Grass-legume pastures reduce grower/producer inputs. Historical research provides limited pertinent information needed for improving rotational grazing under current and future management strategies. A USDA-ARS multi-disciplinary team of scientists in Logan, UT evaluated grass-legume mixtures for pastures and determined that tall fescue-birdsfoot trefoil mixtures had equal or higher forage yield, nutritive energy, and steer weight gains than fertilized tall fescue monocultures. This research also demonstrated that tall fescue- birdsfoot trefoil mixtures provide less nitrogen in the form of animal waste (i.e., solid manure and urine) to ground water than grass monocultures, and produced less ammonia-N and methane emissions. Moreover, data indicated that grazing tall fescue and birdsfoot trefoil mixtures can reduce the use of synthetic fertilizer, without lowering forage and livestock production. Thus, the use of grass/legume mixtures in pastures can dramatically reduce production costs and, thus, allow U.S. farmers to be more sustainable and competitive in agricultural markets. 02 Cold tolerant orchardgrass improves pasture production. Orchardgrass is a productive, nutritious forage that is used worldwide in more temperate climates. However, the genetic relationships among commercial cultivars are relatively narrow (i.e., many have similar parentage), making it increasingly difficult to introduce novel cultivars into the marketplace. Plant breeders are interested in introducing late-maturing, winter hardy, and nutritious orchardgrasses that are genetically unrelated so agricultural production will be less susceptible to biotic (e.g., disease) and abiotic (e.g., cold) threats. A USDA-ARS multi-disciplinary team of scientists in Logan, UT released the genetic stock, UTDG-101 orchardgrass, as a new gene source for developing late-maturing orchardgrass while maintaining excellent forage quality and increased winter tolerance. UTDG-101 possesses comparatively greater crude protein, relative feed value, sugars, and other characteristics that make it superior to such cultivars as Benchmark Plus, Potomac, Paiute, and Seco. Additionally, UTDG-101 exhibits less winter injury than other orchardgrass cultivars, tall fescue, and perennial ryegrass cultivars examined. These characteristics make UTDG-101 an important source of new, genetically diverse orchardgrass germplasm for breeding and cultivar release in commercial breeding programs to increase pasture productivity. 03 Hybrid Basin wildrye grass improves rangeland forage production and nutrition. Basin wildrye ranks among the largest native grasses in western North America and can provide useful forage in the early spring growing season. However, its use is limited by its relatively low forage quality and animal palatability when compared to other wildrye and wheatgrasses. In an attempt to increase forage yield and quality, hybrids between basin wildrye and creeping wildrye were developed by a USDA-ARS multi-disciplinary team of scientists in Logan, UT to study the genetic control of these traits and develop improved wildryes for late fall and winter forage. The hybrids produced 36% more forage than did the parents and commercially available wildrye cultivars, and, thus, are gene sources (i.e., genetic stock for use in further breeding) to improve basin wildrye forage yield. This hybrid was used to identify genes and chromosome regions controlling vegetative yield, plant height, flowering, early-season forage quality (protein), and late-season forage quality traits. The molecular tools and progeny derived from this hybrid are being used to improve understanding of the genetic and physiological mechanisms controlling vegetative yield, and fiber, lignin, and protein content. Such information may lead to the development of new low-input perennial grass feedstocks for the western United States. 04 Molecular marker development and application improves prediction of high performance orchardgrass. Orchardgrass breeders want to know how cultivars are related so that they can find unique genetic stocks (i.e., plants that possess yield and/or quality traits not present in commercial cultivars) to make crosses (hybrids) that will result in cultivars having added value and yield. The molecular genetic analysis of a diverse array of North American orchardgrass cultivars by a USDA- ARS multi-disciplinary team of scientists in Logan, UT revealed large genetic differences among the cultivars examined. Thus, cultivars could not be segregated into groups. This was not because orchardgrass cultivars have too little genetic variation, but because they have too much. However, DNA markers were not useful in differentiating all cultivars, and, thus, making predictions of hybrid vigor (i.e., degree of increase in yield and quality) will require breeding for increased uniformity within cultivars. Results also indicated that breeders could use DNA markers to conduct more specific selection among existing genetic stocks to improve the species. Molecular markers were made available for use by private and public orchardgrass breeders to improve selection effectiveness and efficiency to reduce the time required for release of improved cultivars.

Impacts
(N/A)

Publications

  • Jensen, K.B., Anderson, W.F. 2014. Rangeland and warm-season forage grasses. In: Smith, S., Diers, B., Specht, J., Carver, B., editors. Yield gains in major U.S. field crops. CSSA Special Publications 33. Madison, WI: American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc. p. 219-266.
  • Leffler, A.J., James, J.J., Monaco, T.A., Sheley, R.L. 2014. Running head: traits of native and invasive plants. Ecology. 95:298-305.
  • Wang, R., Lu, B. 2014. Biosystematics and evolutions of perennial Triticeae species revealed by genomic analyses. Journal of Systematics and Evolution. doi:10.1111/jse.12084.
  • Dou, Q., Wang, R., Lei, Y., Yu, F., Li, Y., Wang, H. 2013. Genome analysis of 7 Kengyilia (Triticeae Poaceae) species with FISH and GISH. Genome. 56:641-649.
  • Mujeeb-Kazi, A., Kazi, A.G., Dundas, I., Rasheed, A., Bux, H., Chen, P., Wang, R., Xu, S.S., Mahmood, T. 2013. Genetic diversity for wheat improvement as a conduit to food security. Advances in Agronomy. 122:179- 258.
  • Deng, C.L., Bai, L.L., Fu, S.L., Yin, W.B., Zhang, Y.X., Chen, Y.H., Wang, R., Zhang, X.Q., Han, F.P., Hu, Z.M. 2013. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium. PLoS One. 8(8):e72564. DOI:10.1371/journal.pone.0072564.
  • Mukherjee, J.R., Jones, T.A., Monaco, T.A. 2013. Biomass and defoliation tolerance of 12 populations of Pseudoroegneria spicata at two densities. Rangeland Ecology and Management. 66:706-713.
  • Jones, T.A., Parsons, M.C., Larson, S.R., Mott, I.W. 2014. Notice of release of Antelope Creek and Pleasant Valley germplasms of bottlebrush squirreltail. Native Plant Journal. 15:57-64.
  • Jones, T.A. 2014. Ecologically appropriate plant materials for functional restoration of rangelands. Journal of Sustainable Forestry. 33:93-103.
  • Johnson, D.A., Bushman, B.S., Jones, T.A., Bhattarai, K. 2012. Identifying geographically based metapopulations for development of plant materials indigenous to rangeland ecosystems of the western USA. Progress in Botany. 74:265-291.
  • Johnson, P.G., Johnson, D.A., Connors, K.J. 2013. Evaluation of Chinese and Kyrgyzstan grass germplasm collections for maintenance of green cover under limited irrigation in western North America. International Turfgrass Society Research Journal. 12:305-318.
  • Jensen, K.B., P. Harrison, N.J. Chatterton, B.S. Bushman, J.E. Creech. 2014. Seasonal trends in nonstructural carbohydrates in cool- and warm- season grasses. Crop Science. 54:1-13.
  • Morris, L.R., Monaco, T.A., Sheley, R.L. 2014. Impact of cultivation legacies on rehabilitation seedings and native species re-establishment in Great Basin desert shrublands. Rangeland Ecology and Management. 67:285- 291.
  • Ali, A., Yang, E., Staub, J.E., Chung, S. 2014. Putative paternal factors controlling chilling tolerance in Korean market-type cucumber (Cucumis sativus L.). Scientia Horticulturae. 167:145-148.
  • Ali, A., Yang, E., Bang, S., Chung, S., Staub, J.E. 2014. Assessment of chilling injury and molecular marker analysis in cucumber cultivars (Cucumis sativus L.). Korean Society of Horticulture Science Journal. 32:227-234.
  • Ma, Y., Staub, J.E., Robbins, M.D., Johnson, P.G., Larson, S.R. 2013. Genetic characterization of Kyrgyzstan fine-leaved Festuca valesiaca germplasm for use in semi-arid low-maintenance turf applications. Genetic Resources and Crop Evolution. 61:185-197.
  • Gordon, V.S., Staub, J.E. 2013. Backcross introgression of plastomic factors controlling chilling tolerance into elite cucumber (Cucumis sativus L.) germplasm: Early generation recovery of recurrent parent phenotytpe. Euphytica. 195:217-234.
  • Yun, L., Larson, S.R., Mott, I.W., Jensen, K.B., Staub, J.E. 2014. Genetic control of rhizomes and genomic localization of a major-effect growth habit QTL in perennial wildrye. Molecular Genetics and Genomics. 289:383- 397.
  • Larson, S.R., Jensen, K.B., Robins, J.G., Waldron, B.L. 2014. Genes and quantitative trait loci controlling biomass yield and forage quality traits in perennial wildrye. Crop Science. 54:111-126.
  • Svejcar, A.J., Boyd, C.S., Davies, K.W., Madsen, M.D., Bates, J.D., Sheley, R.L., Marlow, C., Bohnert, D., Borman, M., Mata-Gonzalez, R., Buckhouse, J., Stringham, T., Perryman, B., Swanson, S., Tate, K., George, M., Ruyle, G., Roundy, B., Call, C., Jensen, K.B., Launchbaugh, K., Gearhart, A., Vermeire, L.T., Tanaka, J., Derner, J.D., Frasier, G.W., Havstad, K.M. 2014. Western land managers will need all available tools for adapting to climate change, including grazing: A critique of Beschta et al. Environmental Management. 53:1035-1038. DOI: 10.1007/s00267-013-0218-2.
  • Jones, T.A. 2013. When local isn't best. Evolutionary Applications. 6:1109- 1118.
  • Robins, J.G., Escribano, S. 2014. Phenotypic performance of timothy accessions under irrigated and non-irrigated conditions. Crop Science. 54:1079-1086.
  • Robins, J.G., Xie, W., Escribano, S., Bushman, B.S., Zhang, X. 2014. Cultivar x binary mixture interaction effect on agronomic traits in orchardgrass. Grassland Science. 60:104-111.
  • Creech, C.F., Waldron, B.L., Ransom, C.V., Zobell, D.R., Creech, J.E. 2013. Factors influencing the field germination of forage kochia. Crop Science. 53:2201-2208.


Progress 10/01/12 to 09/30/13

Outputs
Progress Report Objectives (from AD-416): Objective 1: Collect, characterize and evaluate grass, legume, and forb germplasm for genetic structure/variation, stand establishment, and persistence characteristics for use on disturbed and semi-arid rangelands in the Great Basin and eastern Upper Mojave Desert. (Objective C.2, NP 215 Action Plan) Objective 2: Develop grass, legume, forbs, and sub-shrub perennial germplasms/cultivars with increased stand establishment and persistence, seed production, and forage yield and quality on dry, harsh disturbed rangelands of the western US. (Objective C.2, NP 215 Action Plan) Objective 3. Develop breeding strategies and improved grass and legume germplasm for use on pastures and turf under low inputs in the Intermountain West. (Objective E.1, F.2, G.1, J.1, NP 215 Action Plan) Objective 4: Identify grass, legume, and sub-shrub species and mixtures that have increased forage biomass and quality for fall and winter grazing on semi-arid rangelands. (Objective A.1, C.2, NP 215 Action Plan) Objective 5: Identify and describe trait inheritance, quantitative trait loci (QTL), and association mapping for rhizome development, fall and winter forage yield and quality, salinity tolerance, winter hardiness, heading and flowering date, turf quality, and selenium and other heavy metal uptake for improved forages using genomic techniques. (Objective C. 2, NP 215 Action Plan) Objective 6: Develop integrated management strategies that decrease invasive weed seed banks, increase biodiversity through the establishment of grass, legume, forb mixtures, and develop plant mixtures that reduce wildfires on salt desert and sagebrush shrub lands in the Great Basin. (Objective B.1, NP Action Plan 215) Approach (from AD-416): The semi-arid and arid rangelands and irrigated pastures of the western U. S. provide a broad array of ecosystem services, including livestock forage, a diversity of native plants, pollinators, animals, and recreational activities. Many of these regions are classified as severely disturbed and non-productive. Moreover, based on predicted climate change models for semi-arid regions, environments will become hotter and drier, increasing the already high rate of rangeland and pasture degradation, resulting in the invasion of annual grasses, increasing wildfire frequency, and reducing forage productivity. Thus, in water-limiting environments, there is a need to develop grasses, legumes, and forbs that will establish under drought, compete with invasive weeds, and persist with adequate forage production and quality to meet the needs of wildlife and livestock producers throughout the year. Increasing digestibility in pasture grasses by 1% results in a 3% increase in livestock gains. The Forage and Range Research Lab (FRRL) combines the disciplines of plant breeding, molecular biology, and ecology in conducting experiments to better understand the genetic mechanisms and pathways of seedling establishment, persistence, competition, forage yield and quality, and other abiotic stresses to develop improved plant materials and management practices for use on these western U.S. rangelands and pastures. These plant materials and management strategies will improve sustainability by reducing the impact of wildfires and invasive weeds, improving wildlife habitat, and conserving, restoring, renovating, and reclaiming degraded landscapes. The Forage and Range Research Laboratory (FRRL) focuses on the development of improved germplasm for rangeland, pasture, and turf applications, and the identification of best management practices for sustainable agriculture in the western U.S. For Objective 1, collections of sideoats gramma, big galleta grass, Utah trefoil, and Lewis flax were made from the Mojave Desert and Great Basin. For Objective 2, selection continued for improved wheatgrasses, wildryes, fine fescues, and native legumes for sand establishment, rhizome development, salt tolerance, and persistence in dryland areas with predicted increasingly hot/dry climates of the Great Basin. Forage kochia continued to be evaluated for its ability to establish in degraded rangelands and compete with the invasive weeds. Progress in Objective 3,was made through the genetic improvement of pasture plants (tall fescue, orchardgrass, birdsfoot trefoil) and turfgrasses (Kentucky bluegrass, wheatgrasses, and fine-leaved fescue) for low input applications. Field evaluations were initiated to test the effectiveness of biomass production in grass-legume mixtures compared to chemically fertilized monocultures. Turfgrasses (bluegrasses, fine fescues, and wheatgrasses) were evaluated for color and growth under reduced water regimes. For Objective 4, spring and winter forage studies at Cheyenne, WY and Logan, UT were completed with emphasis on intermediate and tall wheatgrass and small burnet. Foundation (stock) seed fields were established for kura clover and dryland alfalfa. Significant progress in Objective 5, was made in understanding the genetic and physiological mechanisms responsible for yield and quality- related traits under salt and water stress in wildryes, orchardgrass, Kentucky bluegrass, and alfalfa. An assessment of gene expression was initiated to determine the genetic basis of forage kochia seed viability, alfalfa and bluegrass salt tolerance, and orchardgrass late flowering and carbohydrate accumulation. Genetic (DNA) markers were developed for economically important traits (e.g., forage kochia seed viability, alfalfa and bluegrass salt tolerance, orchardgrass late flowering and carbohydrate accumulation) for their localization on genetic maps. Experiments were also initiated to identify genes associated with freezing tolerance in orchardgrass, rhizome development (spreading) in wildryes, salt tolerance and spreading growth habit in alfalfa, and the accumulation of heavy metals in forage grasses grown on contaminated soils. For Objective 6, Utah shrubland sites were ecologically classified (USDA-NRCS Ecological Site Inventory System) and monitored to develop improved range management protocols. Studies to evaluate the interaction between improved plant establishment and competition with cheatgrass were initiated to examine the effect of mowing, burning, and herbicide applications on cheatgrass seed banks. Previous research leading up to these objectives is described in the expired project #5428- 21000-012-00D annual report. Accomplishments 01 Plant development for western rangelands, pastures, and roadsides. Since 1984 the FRRL has developed and released 42 cultivars for use on degraded rangelands and pastures, and reduce inputs in roadsides turfgrass applications. Since 2006 it has released fourteen cultivars including Russian wildrye (1; released 2006), wheatgrass (6; released 2007-2012), forage kochia (1; released 2012), bottle brush squirreltail (5; 2011-2012) and ricegrass (1; released 2006) cultivars that have established themselves in the market place and now provide significant resources for improved rangeland productivity under environmental considerable stresses (water, salt) present in the Great Basin. This statement is substantiated by the fact that a significant portion of the BLM public �seed buys� for restoration of disturbed landscapes (principally from wildfires) are comprised of FRRL plant materials (e.g. , June 2012, 42% and October 2012, 47%). 02 Improved germination and stand establishment in forage kochia. Forage kochia is an introduced nutritious, semi-shrub that has been seeded on western U.S. rangelands for fall and winter forage; however, its widespread acceptance has been reduced by its poor seedling germination and hence reduced stands. The ARS-FRRL in Logan, UT, completed a study showing that two subspecies of B. prostrata, grisea and virescens, age of seed, and planting date all affect forage kochia seed germination in the field. At 45 days after planting, when germination was at or near maximum, current year�s harvested seed of subspecies grisea had field germination substantially higher compared to subspecies virescens. Year- old seed of both subspecies germinated at less than 15% during the same planting dates of January through April. Thus, planting in January or February using current year�s harvested seed of subspecies grisea provided the best forage kochia germination, and hence increased the likelihood of a successful stand. These results have been disseminated to livestock producers through several regional meetings in Montana, Wyoming, and Utah during the winter of 2013. The use of forage kochia during the fall and winter grazing periods can reduce overall animal feeding costs by up to 25%. 03 Discovery of candidate genes associated with plant architecture of rangeland grasses. Grass flower and stem branches show architectural differences that ultimately determine the number of seeds and stems produced by each plant. Flower branches of Triticeae grasses are usually contracted into a spike formation, with the number of flowering branches (spikelets) per node conserved within species and genera. Perennial Triticeae grasses of the genus Leymus are unusual in that the number of spikelets per node varies, flowering branches may be extended to form a panicle, and vegetative stems may form subterranean rhizomes. Chromosome regions associated with differences in the number, size, and density of flower and stem branches, including subterranean rhizome branches were identified by ARS scientists in Logan, UT, in experimental populations derived from two divergent Leymus species using 360 DNA markers derived from branch meristem expressed genes. Alignments of genes, mutations, and quantitative trait loci controlling similar traits in other grass species were identified using the Brachypodium genome reference sequence. These experiments provided evidence that genes controlling flower and stem branch architecture are conserved among the grasses, are governed by natural selection, and can serve as possible targets for improving seed, forage, and grain production. 04 Understanding the interactions between plant establishment and soil nutrients. The ARS-FRRL in Logan, UT, has been a participant of a federally-funded ecosystems assessment project titled �Invasive Annual Grasses in the Great Basin Ecosystem: Applying Ecologically-based Invasive Plant Management (EBIPM)� in the Intermountain Region, which ended in FY 2012/13. The project used EBIPM to develop management principles that could be used for integrated ecosystem assessment and management of degraded landscapes. It enhanced land manager understanding of ecological concepts and management methods, program cost, and linkages among science and management. In conjunction with this project, the FRRL evaluated the responses of invasive weeds to concentrations of nitrogen and phosphate, and found that plant growth rate depended primarily on nitrogen acquisition from the soil (cultivated or uncultivated) and that invasive weeds acquired nitrogen earlier than other rangeland plants. Early weed acquisition of soil nutrients leads to mineral depletion; poor stand establishment, and reduced plant growth of productive native and non-native rangeland plants. 05 Improved germination and stand establishment in native legumes. Although native legumes and forbs increase the biodiversity of western U.S. rangelands leading to improved productivity and enhanced habitats for herbivores, they are difficult to establish. The ARS-FRRL in Logan, UT, initiated greenhouse and field germination studies to solve these problems. Critical factors were identified to maximize seedling establishment in three legume species native to the Great Basin Region of the western U.S.; basalt milkvetch, western prairie clover, and Searls� prairie clover. All three species emerged faster when the seed was scarified; however, emergence was least affected in basalt milkvetch. Companion field studies showed that spring plantings of the western and Searls� prairie clovers were most successful and that fall plantings were best for basalt milkvetch. These results are being used to establish commercial seed fields of these species.

Impacts
(N/A)

Publications

  • Monaco, T.A., Jones, T.A., Thurow, T.L. 2012. Identifying rangeland restoration targets: an appraisal of challenges and opportunities. Rangeland Ecology and Management. 65:599-605.
  • Peel, M., Waldron, B.L., Jensen, K.B., Robins, J.G. 2013. Alfalfa and forage kochia improve nutritive value of semiarid rangelands. Forage and Grazinglands. doi:10.1094/FG-2013-121-01-RS.
  • Morris, L.R., Monaco, T.A., Blank, R.R., Leger, E., Sheley, R.L. 2013. Land-use legacies of cultivation in sagebrush ecosystems affect soil nutrients and plant growth nearly a century after cultivation. Plant Ecology. 214:831-844.
  • Bushman, B.S., Warnke, S.E., Amundsen, K.L., Combs, K., Johnson, P.G. 2013. Molecular markers highlight variation within and among Kentucky bluegrass varieties and accessions. Crop Science 53:2245-2254.
  • Anower, M.R., Mott, I.W., Peel, M., Wu, Y. 2013. Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Plant Physiology and Biochemistry. doi: 10.1016/j.plaphy. 2013.06.026.
  • Jones, T.A. 2013. The development of ecologically appropriate plant materials for restoration applications. Bioscience. 63:211-219.
  • Monaco, T.A., Call, C.A., Hirsch, M.C., Fowers, B. 2012. Repairing ecological processes to direct ecosystem state changes. Rangelands. 32:23- 26.
  • Morris, L.R., Monaco, T.A., Blank, R.R., Sheley, R.L. 2013. Long-term redevelopment of resource islands in shrublands of the Great Basin, USA. Ecosphere. 4:12.
  • Morris, L.R., Monaco, T.A. 2012. Assessing the past: the importance of cultivation history in EBIPM success. Rangelands. 34:19-22.
  • Jensen, K.B., Bushman, B.S., Waldron, B.L., Robins, J.G., Johnson, D.A., Staub, J.E. 2013. Stabilizer, a new low growing Siberian wheatgrass cultivar for use on semiarid lands. Journal of Plant Registrations. 7:89- 94.
  • Robins, J.G., Bushman, B.S., Jensen, K.B. 2012. Dry matter yield combining ability among nine sources of orchardgrass germplasm. Euphytica 188.419- 428. doi 10.1007/s10681-012-0707-z.
  • Robins, J.G., Bushman, B.S., Jensen, K.B., Blaser, G. 2012. Genetic variation for morphology and maturity among the half-sib progeny of nine orchardgrass germplasm populations. Crop Sci. 52:2276-2282. doi: 10.2135/ cropsci2012.02.01.20.
  • Larson, S.R., Kellogg, E.A., Jensen, K.B. 2013. Genes and QTLs controlling inflorescence and culm branch architecture in Leymus (Poaceae: Triticeae) wildrye. Journal of Heredity. doi:10.10931/jhered/est/033.
  • Culumber, C.M., Larson, S.R., Jones, T.A., Jensen, K.B. 2013. Wide-scale population sampling identifies three phylogeographic races of Leymus cinereus and low-level genetic admixture with Leymus triticoides. Crop Sci. 53:996-1007.
  • Waldron, B.L., Larson, S.R., Peel, M., Jensen, K.B., Mukimov, T.C., Rabbimov, A., Zobell, D.R., Wang, R., Smith, R.C., Harrison, R.D., Davenport, B.W. 2013. 'Snowstorm' a new forage kochia cultivar with improved stature, productivity, and nutritional content for enhanced fall and winter grazing. Journal of Plant Registrations. 7(2): 140-150. doi: 10. 3198/jpr.2012.08.0020crc.
  • Noviandi, C.T., Waldron, B.L., Zobell, D.R., Eun, J.S., Peel, M. 2012. Growth performance, ruminal fermentation profiles, and carcass characteristics of beef steers grazing tall fescue without or with nitrogen fertilization. Professional Animal Scientist. 28:519-527.
  • Bushman, B.S., Warnke, S.E. 2013. Genetic and genomic approaches for improving turfgrass. In: Stier, J.C, Horgan, B.P., Bonos, S.A editors. Turfgrass: Biology, Use, and Management. Agronomy Monograph No. 56. Madison, WI: American Society of Agonomy Press. p. 683-712.
  • McArthur, R.I., Zhu, X., Oliver, R.E., Klindworth, D.L., Xu, S.S., Stack, R.W., Wang, R., Cai, X. 2012. Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat. Chromosome Research. 20:699- 715.
  • Bushman, B.S., Spangenberg, G. 2013. Proceedings of the 7th International Symposium on the Molecular Breeding of Forage and Turf. Available:
  • Jones, T.A. 2013. Plant materials for novel ecosystems. In: Hobbs, N.E, Higgs, E.S, Hall, C.M. editors. Novel Ecosystems: Intervening in the New Ecological World Order. Hoboken, NJ: Wiley-Blackwell Press. p.212-227.