2010 Washington State University Research Plan of Work

Status: Accepted
Date Accepted: 05/28/09

I. Plan Overview

1. Brief Summary about Plan Of Work

The goal of the Washington State University Agricultural Research Center (ARC), the Agricultural Experiment Station of the State of Washington, is to promote research beneficial to the citizens of Washington and to participate in delivering relevant research results to the right target audiences. The ARC recognizes its unique land grant research mission to serve the people of Washington and promote their interests. The ARC provides leadership in discovering and accessing knowledge by carrying out high quality research that contributes to a safe, abundant food and fiber supply; promotes the well being of individuals, families, and communities; enhances sustainability of agricultural and economic systems; and promotes stewardship of natural resources and ecological systems. Washington State is beautiful, rich in natural resources and has a highly diverse topography and climate. Our agricultural system reflects this diversity, including over 300 crops, which are sold domestically and exported, particularly to the Pacific Rim. Washington is especially known for its apples, wheat, livestock, milk and milk products, and produces a major share of many specialty crops, like berries and hops. Most of the state's farmland is in Central and Eastern Washington but most of the state s population is located in a coastal zone on the west side of the Cascade Mountains in a corridor roughly following Interstate Highway 5 from the Canadian border south to Vancouver, Washington. Western Washington is home to an extraordinarily diverse agriculture. The region can be characterized as an expanding urban setting in which maintaining a high quality environment and supporting local food systems are quite important. A number of years ago, as a result of decreasing state support to the University, the Agricultural Research Center chose to narrow the scope of its research to focus on the food system of Washington and the needs of the various stakeholders in this system. As a result of this focus, we have made significant commitments to both conventional and organic agricultural production systems by supporting research and extension programs that emphasize economic and environmental sustainability. We prioritize fundamental research in the belief that we are the major provider of this sector of the research portfolio to the State, but we have also been aggressive in translating research with long-term objectives into practical applications. There are many pressures on our largest crops: new varieties taking market share from our apples; changes in input costs and per bushel prices affecting how we grow our wheat; agriculture labor supply affecting the timing and cost of our fruit harvests. As we examine how to adapt to these new constraints, we believe they also create opportunities. Examples include the possibility of using perennial wheat varieties in low rainfall areas of the state to decrease input costs and secure erosion prone soil or developing techniques suitable for local viticulture and enology. Washington has the second largest wine industry in the United States but there are issues related to local climate, soil and management that need to be resolved in order to exploit the potential of this crop. New buildings are being constructed in our precinct of the campus to house the integrated biotechnology aspects of our programs that will bring other life scientists into closer proximity. Our emphasis in horticultural genomics is progressing through new hiring and program maturation. As a result of their studies on water management in the west for multiple uses, our economists have been critically examining water use in urban development, crop production, fisheries and recreation. The biological systems engineers are working on precision systems for delivering water at appropriate times for good crop yield. Integrated pest management is emphasized. The millions of tons of biomass generated by our agricultural enterprises and the desire to create a bioeconomy in Washington State have resulted in an increased effort to develop technologies and processes to convert Washington based biomass feedstocks to products and fuels and to do this in a way that fits the unique aspects of what the state can produce sustainably. We hope to capitalize on many aspects of the Washington agricultural system to benefit our stakeholders, to increase rural vitality, and to preserve our abundant natural resources. The Plan of Work for 2010 2014 is a plan for what we hope do now to prepare for a sustainable economy and society beyond that time frame and it describes the priorities we will try to pursue during a stressful interval.

Report Date 11/10/2009 Page 1 of 146

Estimated Number of Professional FTEs/SYs total in the State.

Year	Exter	nsion	Rese	earch
Tear	1862	1890	1862	1890
2010	0.0	0.0	479.9	0.0
2011	0.0	0.0	479.9	0.0
2012	0.0	0.0	479.9	0.0
2013	0.0	0.0	479.9	0.0
2014	0.0	0.0	479.9	0.0

II. Merit Review Process

1. The Merit Review Process that will be Employed during the 5-Year POW Cycle

- Internal University Panel
- External University Panel
- Expert Peer Review
- Other (individual external peer reviewers from within or without the university)

2. Brief Explanation

Agricultural Research Center (ARC) projects describe work to be done by individual faculty members or faculty teams. Proposals are first submitted to an appropriate department chair, who reviews the submission and, sometimes after consulting with other administrators, ascertains whether the topic of the research is consistent with departmental and College goals. If so, the individual ARC project proposal is sent to internal and external reviewers who are asked whether the research represents solid science, is directed to topics of current interest and will advance the field of study and whether the research plan is appropriate. Reviewers are asked to offer suggestions for improvement and to identify the strongest and weakest points of the proposal. After comments are received from the reviewers, the chair assembles the commentary and submits it to the faculty member. The faculty member then revises the project proposal. After examining these changes, the Chair submits the project proposal to the Agricultural Research Center where it is reviewed by either the Director or the Associate Director. After this review, the proposal is sent to USDA-CSREES for review by the appropriate National Program Leader. When approval is final, the approved project is entered into our database and into the CRIS system. In addition to review of individual projects, the programs are evaluated on a yearly basis and are subject to review in the context of the university planning and evaluation processes. We also make use of the expert CSREES system that arranges for external review teams to examine specific departments or activities.

III. Evaluation of Multis & Joint Activities

1. How will the planned programs address the critical issues of strategic importance, including those identified by the stakeholders?

The merit review process used to approve ARC projects involves internal and external peer review, primarily to assess the technical issues and overall focus of the proposed project. Input from our stakeholders occurs via contacts with producers, both individually and through crop commission and other representatives. At an administrative level, CSREES guidelines and the WSU College of Agricultural, Human and Natural Resource Sciences strategic plan, which was developed with diverse inputs from university and state agencies and from the CAHNRS Advisory Council and Kitchen Cabinet, influence the ARC agenda by providing reference criteria for rating programs relative to CAHNRS priorities. Recently we have persuaded the Washington legislature for funds to administer an internally administered grants program that can provide funds to pursue emerging opportunities or emergency needs, with the understanding that these allocations will be reviewed after the fact. This year several projects focused on energy research issues. Our phone number is available and the sense of ownership by state residents helps the approval process to remain sensitive to critical issues.

Report Date 11/10/2009 Page 2 of 146

2. How will the planned programs address the needs of under-served and under-represented populations of the State(s)?

We have attempted to address the needs of under served groups by having a diverse Advisory Council and through local presence throughout the state. There are also ARC research projects that touch on the needs of minority groups. The Department of Community and Rural Sociology monitors the changing social dynamics in WA due to the influx of Hispanic populations. The Food and Environmental Quality Laboratory (FEQL) has been monitoring cholinesterase levels in orchard workers, who are mainly members of minority groups. More of the outreach to minority groups, especially including localized rural Native American and Hispanic populations, is described in the WSU Extension Plan of Work.

3. How will the planned programs describe the expected outcomes and impacts?

ARC projects are usually funded for five years and we are moving toward a system where related projects are grouped into more team and concept oriented sub programs. We expect this trend to accelerate as the Research and Extension thrusts of the college are integrated under a single Dean as the result of a recently announced merger of the two separated units. Projects are reviewed to see whether the objectives are worthy and the procedures will lead to results and whether the projects will contribute to meeting benchmarks established by the departments and the College. Funded faculty Pls are reviewed annually by their department or program chairs as part of the WSU management process and their progress reports are reviewed in the ARC by the Director or Associate Director. Outcomes are described in the CRIS reports filed annually, and may include publications in refereed journals, web sites or other descriptive information. Outcomes may also include presentations or reports prepared for producer groups, interested parties, etc.. The existence of expertise within the ARC is most easily accessed through web sites of the departments or of individual faculty. The Planned Programs do not now report independently of these other mechanisms except in this document.

4. How will the planned programs result in improved program effectiveness and/or efficiency?

The research goals of each project have been considered in assigning it to a Planned Program area and, while these are somewhat congruent with our departmental organization, an attempt has been made to group projects so that leaders of each Planned Program have an overview of most, if not all, of the ARC efforts in a research area. A reorganization plan established several years ago at the University level that separated WSU Extension from the College of Agricultural, Human and Natural Resource Sciences has been revised in 2009 and the direction reversed, a situation that should lead to closer collaboration between ARC and WSU Extension. In the interim organization, many of our functions continued to be co localized and many faculty members continued to be appointed with split appointments that included both research and extension responsibilities. This should make the impending merger of Research and Extension activities much easier and the resulting positions more functional

IV. Stakeholder Input

1. Actions taken to seek stakeholder input that encourages their participation

- Targeted invitation to non-traditional stakeholder groups
- Targeted invitation to traditional stakeholder individuals
- Targeted invitation to traditional stakeholder groups
- Targeted invitation to non-traditional stakeholder individuals

Brief explanation.

The College of Agricultural, Human and Natural Resource Sciences (CAHNRS) has an Advisory Council which meets two to three times annually to review CAHNRS programs, and in so doing, comments on the research being performed in the Agricultural Research Center. The Advisory Council has a broad and diverse membership of recognized leaders, who serve three-year terms and can be reappointed. It currently includes twenty members from various stakeholder groups including: agribusiness supply, marketing and finance, the WSU Alumni Association, youth and family organizations, farm labor, the wine industry (both viticulture and enology), students, farmers, organic agriculture, 4 H and youth programs, the apparel sector, the Native American tribes, the Washington Department of Agriculture, the Washington Department of Natural Resources, cattlemen and the dairy industry, the lumber industry, state counties, community colleges and the agrichemical industries. We also ensure a broad geographical representation from across the State. The advisory committee,s function is to assist the Dean and Directors in identifying and developing broad based programs and priorities to promote targeted excellence within CAHNRS. A second purpose is to communicate with clientele groups so that there is awareness of CAHNRS programs and the impacts these might have on their (and our) constituents. This may translate into more informed discussion of the objectives and needs of CAHNRS as these groups interact with these constituents, the Legislature and Washington state agencies. The group also periodically examines short term issues facing the College. The Dean also uses a fourteen member advisory group called the Kitchen Cabinet to advise him on more industry oriented questions. In addition to receiving advice from the members of the

Report Date 11/10/2009 Page 3 of 146

Advisory Council and the Kitchen Cabinet, the Dean and Directors routinely attend many commodity commission meetings and are in close touch with members of the corresponding industries. Advisory groups are attached to the Wine Advisory Committee, the Food and Environmental Quality Laboratory and the Center for Sustaining Agriculture and Natural Resources. We hold open research reviews for the majority of our federal and state initiative projects at which the stakeholders often critique the work and make suggestions for future endeavors. We are also involved in annual research reviews with many of our State,s commodity commissions. We are connected to the organic and sustainable agriculture movement through the Washington Sustainable Food and Farming Network. This year and in past years we have held public listening sessions around the state concerning our new initiatives to the State Legislature. CAHNRS maintains several Research Centers across the state (Mt. Vernon, Wenatchee, Prosser) where the faculty and staff work very closely with local clienteles on specific regional problems. The Centers are visible reminders of the presence of the WSU Agricultural Research Center and CAHNRS. Most departments within CAHNRS also maintain their own advisory committees and receive feedback about the direction of their research and outreach activities.

2(A). A brief statement of the process that will be used by the recipient institution to identify individuals and groups stakeholders and to collect input from them

1. Method to identify individuals and groups

- Use Internal Focus Groups
- Open Listening Sessions
- Use External Focus Groups
- Use Advisory Committees

Brief explanation.

We use our Advisory Committee and Kitchen Cabinet as described in the previous paragraph plus internal and external focus groups. As appropriate, we also holding open public meetings to gain input for new initiatives, including projects taken to the Legislature. It is important to identify the stakeholder concerns, and listening sessions have been particularly valuable in the past and also in the present.

2(B). A brief statement of the process that will be used by the recipient institution to identify individuals and groups who are stakeholders and to collect input from them

1. Methods for collecting Stakeholder Input

- Meeting with traditional Stakeholder individuals
- Meeting with invited selected individuals from the general public
- Meeting specifically with non-traditional groups
- Meeting with traditional Stakeholder groups
- Meeting specifically with non-traditional individuals

Brief explanation

Established industries tend to have formal bodies that we have worked with through the years and many of our interactions with these industries are through these constituent groups. The situation is more complex in interacting with emerging groups, particularly if these are not organized with a component that includes research support. Contacts with these groups are often made through specific issues, like carrying out the research to certify a pesticide for a minor crop, dealing with a land use issue that is peculiar to their industry, or determining methods that can be used locally to establish sustainable production. In these cases we try to identify capabilities we have that might be useful and often try to develop a plan to obtain or allocate resources. The ARC has relatively little funding or personnel that can be redirected rapidly so, especially for minor crops, it is important to see areas where resources can be shared through coalition building, often with other stakeholders or other universities. As a state institution, we also interact with stakeholders referred to us by the legislature or by state and county executives.

3. A statement of how the input will be considered

- To Set Priorities
- In the Action Plans
- Redirect Research Programs
- To Identify Emerging Issues
- In the Staff Hiring Process

Brief explanation.

The input of our stakeholders is taken into careful consideration because we are concerned about the relationship of the

Report Date 11/10/2009 Page 4 of 146

outcomes of our research to the welfare of the citizens of Washington, our primary stakeholders. In the short term, we may see whether we can reallocate resources to meet acute problems that are identified. In the longer term, we may try to hire individuals who can meet more chronic needs or work with stakeholders to identify additional resources that can be brought to bear. In addition to more conventional ways of identifying and dealing with Emerging Issues, we have recently established an internal competitive grant program (http://arc.wsu.edu/info/eri/index.html) that focuses on supporting integrated, interdisciplinary approaches to problem areas identified through consultation with our stakeholders.

Report Date 11/10/2009 Page 5 of 146

V. Planned Program Table of Content

S. NO.	PROGRAM NAME
1	Program in Food Science
2	Program in Animal Science
3	Western Regional Plant Introduction Station (W-006)
4	Program in Plant Pathology
5	Program in Economic Sciences
6	Program in Statistics
7	Program in Community and Rural Sociology
8	Program in Agricultural Animal Health
9	Program in Fruit and Vegetable Development, Production and Management
10	Program in the Post Harvest Quality of Fruits and Vegetables
11	Program in Environmental Horticulture
12	Program in Entomology
13	Program in Natural Resource Sciences
14	Wood Materials Engineering Laboratory
15	Program in Biological Systems Engineering
16	Institute of Biological Chemistry
17	Program in Crop Genetics and Breeding
18	Program in Sustainable Crop and Soil Managment

Report Date 11/10/2009 Page 6 of 146

V(A). Planned Program (Summary)

Program #1

1. Name of the Planned Program

Program in Food Science

2. Brief summary about Planned Program

The School of Food Science includes faculty with expertise in the areas of food safety, food chemistry, food microbiology, food processing, and food quality analysis whose efforts will lead to the development of a nationally recognized program at the forefront of food research in the 21st century. A core mission of this Program is to improve the value and profitability of agricultural commodities and functional components of foods produced in the State of Washington. Washington is recognized nationally and internationally as an important producer of tree fruits, berries, potatoes, vegetables, seafood, meat and dairy products, grains, legumes and wine. The state is best situated to serve niche markets with specialty products of high value because of the diverse climate across Washington and the adaptability and sophistication of producers within its agricultural community who have led it to produce new food products for emerging and value-added markets. The Washington industry is a national leader in the development of sustainable practices and organic farming, a strong indication of its responsiveness to new trends and emerging market demands. The regional food industry responds to a diverse, eclectic, and trend setting consumer base with a large health conscious segment. Washington sustains a large food processing industry, with a growing segment in specialty foods. Washington State is also a major exporter of food products, particularly to Pacific Rim nations.

3. Program existence : Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds : Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
501	New and Improved Food Processing Technologies			25%	
502	New and Improved Food Products			14%	
503	Quality Maintenance in Storing and Marketing Food Products			11%	
702	Requirements and Function of Nutrients and Other Food Components			25%	
712	Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins			25%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

In recent years, the cost of production and competition from international players in conventional agricultural commodities has

Report Date 11/10/2009 Page 7 of 146

increased. Washington producers, because of logistics, cost of production, and increasing environmental and regulatory requirements, are becoming less competitive in many commodity markets. The food science program will provide scientific and technical information to assist producers and processors in developing profitable new foods and new markets for healthy foods. Health-promoting functional foods will include foods that can reduce the risk of cancer and provide healthy food choices. Furthermore, the College of Agricultural, Human and Natural Resources Sciences is poised to provide this assistance to the state agricultural community by building upon existing strengths within the College regarding the production, processing and utilization of a variety of important food products as well as in the area of sustainable organic agriculture and consumer education. The presence of WSU Extension throughout the state and its programmatic emphasis on safe foods and public health will bolster community outreach aspects of the food science program.

2. Scope of the Program

- In-State Research
- Multistate Integrated Research and Extension
- Integrated Research and Extension
- In-State Extension
- Multistate Extension
- Multistate Research

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

The assumptions of the food science program are: (1) that the amount of funding received by individual faculty and staff will be maintained at the 2008 levels, and (2) that societal prioritization of food safety and protecting the food supply will increase over the next five years, and (3) that the development of novel rapid methods to detect food microbiological and other food contaminants will be needed to protect the food supply.

2. Ultimate goal(s) of this Program

Specific goals of this program are to: (1) assist with the development of new knowledge to better define the role of foods and food components in human health, (2) evaluate the role of cultivation practices and processing technologies on the nutritive value of food and food components, focusing on emerging nutrients such as antioxidants, lipids, protein and fiber components, (3) ensure that products developed are safe, stable and health-promoting, (4) improve current agricultural practices of total utilization, and (5) enhance education in food science for students at the university.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Vaar	Exte	Extension		Research	
Year	1862	1890	1862	1890	
2010	0.0	0.0	13.0	0.0	
2011	0.0	0.0	13.0	0.0	
2012	0.0	0.0	13.0	0.0	
2013	0.0	0.0	13.0	0.0	
2014	0.0	0.0	13.0	0.0	

V(F). Planned Program (Activity)

1. Activity for the Program

We will conduct research and disseminate results to the public, industry and scientists on food safety, and quality, (2) expand the existing pilot plant to better serve the needs of the food industry, and (3) deliver educational programs on food handling, sanitation, and safety.

Report Date 11/10/2009 Page 8 of 146

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension				
Direct Methods	Indirect Methods			
Workshop	Other 2 (Pamphlets)			
Demonstrations	Web sites			
Other 2 (Training sessions one on one)	Newsletters			
Other 1 (Focus Groups)	Other 1 (Questionnaires)			
Group Discussion				

3. Description of targeted audience

Our target audience includes research and extension scientists in the disciplines of food science, employees of the food industry, persons interested in food security policy, legislators and consumers. We also have an audience in the Native American and Hispanic communities.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	6	3	0	0
2011	6	4	0	0
2012	6	4	0	0
2013	6	3	0	0
2014	6	3	0	0

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:3 **2011**:4

2012:3

2013:3

2014:3

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	30	4	34
2011	35	4	39
2012	35	4	39
2013	25	4	29
2014	30	4	34

V(H). State Defined Outputs

1. Output Target

Peer reviewed journal publications

Report Date 11/10/2009 Page 9 of 146

2010 26	2011 30	2012 :30	2013 25	2014 30
 Graduate students 	s supported by experiment st	ation funding and grants		
2010 :12	2011 1 2	2012 :12	2013 :12	2014 :12

Report Date 11/10/2009 Page 10 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Investigation of rapid detection systems for food contamination.
2	Investigation of novel food processing and storage methods
3	Scientists and companies would use the information we have published to further their research and food production practices
4	Rapid detection systems move to a pilot plant testing phase.
5	Information in published research is incorporated into production practices thus improving the safety of the food supply.
6	Novel rapid detection methods for food pathogens become available to the food and processing industries improving the safety of the food supply

Report Date 11/10/2009 Page 11 of 146

Outcome #1

1. Outcome Target

Investigation of rapid detection systems for food contamination.

2. Outcome Type: Change in Knowledge Outcome Measure

2010 :1 **2011** :1 **2012** :1 **2013** :1 **2014** :1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 712 - Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins

Outcome #2

1. Outcome Target

Investigation of novel food processing and storage methods

2. Outcome Type: Change in Knowledge Outcome Measure

2010 4 **2011** : 2 **2012** : 3 **2013** 3 **2014** : 3

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 501 New and Improved Food Processing Technologies
- 502 New and Improved Food Products

Outcome #3

1. Outcome Target

Scientists and companies would use the information we have published to further their research and food production practices

2. Outcome Type : Change in Action Outcome Measure

2010 :12 **2011** : 12 **2012** : 12 **2013** :13 **2014** :13

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

712 - Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins

Outcome #4

1. Outcome Target

Rapid detection systems move to a pilot plant testing phase.

2. Outcome Type : Change in Action Outcome Measure

2010 2 **2011** : 1 **2012** : 2 **2013** 2 **2014** : 2

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

712 - Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins

Report Date 11/10/2009 Page 12 of 146

Outcome #5

1. Outcome Target

Information in published research is incorporated into production practices thus improving the safety of the food supply.

2. Outcome Type: Change in Knowledge Outcome Measure

2010 :1 **2011** :1 **2012** :1 **2013** :1 **2014** :1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

712 - Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins

Outcome #6

1. Outcome Target

Novel rapid detection methods for food pathogens become available to the food and processing industries improving the safety of the food supply

2. Outcome Type: Change in Condition Outcome Measure

2010 :1 **2011** :1 **2012** :1 **2013** :1 **2014** :1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

712 - Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Appropriations changes
- Populations changes (immigration,new cultural groupings,etc.)
- Economy
- Government Regulations
- Competing Public priorities
- Competing Programmatic Challenges
- Public Policy changes

Description

We envision that all of the items checked above will affect outcomes. WSU is bracing for some significant projected budget cuts at the state level in addition to issues created by the general economic downturn.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

Other (See below)

Description

The program, which now includes faculty members at the University of Idaho, will be continually evaluated from the WSU side using a variety of processes including: annual review of faculty, staff and graduate students; annual CRIS reporting of individual and regional projects; CRIS reviews of programs research; Institute of Food Technologists (IFT) accreditation; input from college and program advisory groups; graduate student exit interviews; annual evaluation of department accountability measures which include publication rate, citation indices, grant support, enrollment and progress towards reaching research outcome measures.

Report Date 11/10/2009 Page 13 of 146

2. Data Collection Methods

- Structured
- Whole population
- Sampling
- On-Site
- Other (See below)

Description

Focus groups: Meet at different target locations and collect data.

Report Date 11/10/2009 Page 14 of 146

V(A). Planned Program (Summary)

Program #2

1. Name of the Planned Program

Program in Animal Science

2. Brief summary about Planned Program

Research efforts of the Department of Animal Sciences are to increase the quality of food animal production through improved nutrient utilization by animals, better reproductive performance, enhanced genetic potential, better air and water quality and new, improved and safer animal products for human consumption. Our aim is to do this through increasing knowledge of both basic and applied processes through a combination of individual and multidisciplinary research efforts. The focus will be on dairy and beef cattle but will also use swine, laboratory animals, and mathematical models. Major focus areas will include reproductive physiology, ruminant and non-ruminant nutrition, quantitative and molecular genomics, nutrient waste management, animal growth and development and processes to generate new, safe and improved meat products. Some examples include better knowledge of mechanisms of spermatogenesis, endocrine systems and genetics to realize greater reproductive performance; studying mitochondrial DNA to compare breeds for differences in efficiency of energy utilization; searching for candidate genes and markers that will lead to selection of animals with greater quality and yield of meat; studying methods of manufacturing animal feeds to improve animal health and production. These efforts will benefit citizens of the state and nation because of healthier and safer foods, new products and methods that will be adopted by businesses resulting in economic development.

3. Program existence : Mature (More then five years)4. Program duration : Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds: Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 15 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
133	Pollution Prevention and Mitigation	4%		4%	
301	Reproductive Performance of Animals	28%		28%	
302	Nutrient Utilization in Animals	14%		14%	
303	Genetic Improvement of Animals	5%		5%	
304	Animal Genome	11%		11%	
305	Animal Physiological Processes	11%		11%	
307	Animal Production Management Systems	6%		6%	
308	Improved Animal Products (Before Harvest)	12%		12%	
311	Animal Diseases	3%		3%	
701	Nutrient Composition of Food	3%		3%	
722	Zoonotic Diseases and Parasites Affecting Humans	3%		3%	
	Total	100%		100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Our assumption is that many types of research expertise will be required to develop new and improved methods of food animal production. Applied research, especially in beef and dairy production, is needed to bring immediate assistance to these two important segments of our food animal production system. However, understanding of basic processes in reproduction, nutrition and genetics is mandatory to develop new ideas for improved productivity and to understand how differences in applied methods of nutrition, physiology, genetics and management can be achieved. Funding for basic research in food animals will continue to be available because it provides a two-pronged benefit. Directly, it increases the potential for improved animal production and therefore better and healthier food for consumers. Basic research in animals also provides a unique opportunity to develop greater understanding of the corresponding biological mechanisms in humans. This will lead to new methods of improved nutrition, reproduction and health in the human population. Experiments can be conducted with food animals that are impossible to do with humans and, even when studies can be done in humans, more critical and detailed studies can be often done with a

Report Date 11/10/2009 Page 16 of 146

food animal. For some problems, food animals can also provide a better model for research than rodents or other animal species.

2. Scope of the Program

- In-State Extension
- Integrated Research and Extension
- Multistate Research
- In-State Research
- Multistate Extension

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

Our assumption is that many types of research expertise will be required to develop new and improved methods of food animal production. Applied research, especially in beef and dairy production, is needed to bring immediate assistance to these two important segments of our food animal production system. However, understanding of basic processes in reproduction, nutrition and genetics is mandatory to develop new ideas for improved productivity and to understand how differences in applied methods of nutrition, physiology, genetics and management can be achieved. Funding for basic research in food animals will continue to be available because it provides a two-pronged benefit. Directly, it increases the potential for improved animal production and therefore better and healthier food for consumers. Basic research in animals also provides a unique opportunity to develop greater understanding of the corresponding biological mechanisms in humans. This will lead to new methods of improved nutrition, reproduction and health in the human population. Experiments can be conducted with food animals that are impossible to do with humans and, even when studies can be done in humans, more critical and detailed studies can be often done with a food animal. For some problems, food animals can also provide a better model for research than rodents or other animal species.

2. Ultimate goal(s) of this Program

The goal of this program is to improve the production efficiency and quality and yield of product from food animals while minimizing impact on the surrounding environment.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Vaca	Exte	Extension		Research	
rear	Year 1862 1890		1862	1890	
2010	5.0	0.0	14.0	0.0	
2011	5.0	0.0	16.0	0.0	
2012	5.0	0.0	16.0	0.0	
2013	5.0	0.0	17.0	0.0	
2014	5.0	0.0	17.0	0.0	

V(F). Planned Program (Activity)

1. Activity for the Program

We shall: (1) evaluate nutritional, physiological and genetic mechanisms for differences in the use of dietary energy for growth, lactation and animal maintenance, (2) evaluate sources of feedstuffs and methods of processing for enhanced rumen function and productivity in animals, (3) search for candidate genes and DNA markers for improved quality and yield of meat in beef cattle, (4) Search for candidate genes and DNA markers for enhanced reproduction and nutrient utilization in dairy and beef cattle and for susceptibility or tolerance to animal disease, (5) develop new approaches and investigate the molecular and biological regulation of germ and somatic cells in mammalian spermatogenesis, (6) define the underlying mechanisms responsible for the hormonal regulation of somatic tissue growth and development in rainbow trout and other species. (7) Develop mathematical models to better understand and evaluate factors related to metabolism in the lactating dairy cow, (8) obtain gaseous and particulate emissions data from cattle feedlots and provide credible scientific information for making air

Report Date 11/10/2009 Page 17 of 146

quality policy.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension					
Direct Methods	Indirect Methods				
 Demonstrations Other 1 (Field days) Education Class Workshop Group Discussion 	NewslettersWeb sitesOther 1 (Publications)				

3. Description of targeted audience

In general, the target audience for the program includes consumers of food products produced by the livestock industry. However, the pathway of information from our research program includes commercial and seed stock producers in the dairy, beef, swine and sheep industries. It also includes companies that produce feeds, pharmaceuticals, and consulting to these industries

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	2500	5000	1300	2500
2011	2500	5000	1300	2500
2012	2500	5000	1300	2500
2013	2500	5000	1300	2500
2014	2500	5000	1300	2500

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:1 2011:1 2012:1 2013:1 2014:1

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	25	4	29
2011	25	5	30
2012	27	5	32
2013	27	5	32
2014	30	5	35

Report Date 11/10/2009 Page 18 of 146

V(H). State Defined Outputs

1. Output Target

• Peer reviewed journal articles

2010 25 **2011** 25 **2012** :27 **2013** 27 **2014** 30

• Graduate Students supported by Agricultural Research Center and other grant funds

2010 7 **2011** 7 **2012** :8 **2013** B **2014** :12

Report Date 11/10/2009 Page 19 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Enhanced understanding of nutrient utilization and mechanisms of nutrient use by animals.
2	Enhanced food quality, food safety, consumer acceptance of foods from animal sources and issues of animal and human health.
3	Identification of strategies to decrease the environmental footprint from livestock systems.
4	Enhanced reproductive efficiency of livestock.
5	Enhanced understanding of mechanisms associated with growth and differentiation of muscle cells and adipocytes.

Report Date 11/10/2009 Page 20 of 146

Outcome #1

1. Outcome Target

Enhanced understanding of nutrient utilization and mechanisms of nutrient use by animals.

2. Outcome Type: Change in Knowledge Outcome Measure

2010 3 **2011** : 3 **2012** : 3 **2013** 3 **2014** : 5

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 301 Reproductive Performance of Animals
- 302 Nutrient Utilization in Animals
- 303 Genetic Improvement of Animals
- 701 Nutrient Composition of Food

Outcome #2

1. Outcome Target

Enhanced food quality, food safety, consumer acceptance of foods from animal sources and issues of animal and human health.

2. Outcome Type : Change in Knowledge Outcome Measure

2010 :11 **2011** :11 **2012** :11 **2013** :11 **2013** :15

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 303 Genetic Improvement of Animals
- 304 Animal Genome
- 308 Improved Animal Products (Before Harvest)
- 722 Zoonotic Diseases and Parasites Affecting Humans

Outcome #3

1. Outcome Target

Identification of strategies to decrease the environmental footprint from livestock systems.

2. Outcome Type: Change in Knowledge Outcome Measure

2010 3 **2011** : 3 **2012** : 3 **2013** 3 **2014** : 6

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 133 Pollution Prevention and Mitigation
- 302 Nutrient Utilization in Animals

Report Date 11/10/2009 Page 21 of 146

Outcome #4

1. Outcome Target

Enhanced reproductive efficiency of livestock.

2. Outcome Type: Change in Knowledge Outcome Measure

2010 2 **2011** : 2 **2012** : 2 **2013** 2 **2014** : 5

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 301 Reproductive Performance of Animals
- 303 Genetic Improvement of Animals
- 304 Animal Genome

Outcome #5

1. Outcome Target

Enhanced understanding of mechanisms associated with growth and differentiation of muscle cells and adipocytes.

2. Outcome Type : Change in Knowledge Outcome Measure

2010 4 2011 : 4 2012 : 4 2013 # 2014 : 7

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

302 - Nutrient Utilization in Animals

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Appropriations changes
- Economy
- Government Regulations
- Public Policy changes
- Natural Disasters (drought, weather extremes, etc.)
- Competing Public priorities

Description

There are many factors that will affect the outcome of our expected research program, but the most important is the availability of funding primarily at the federal level, and to some extent from companies that are interested in using or marketing results of our research program. We are not expecting support from state government except for facilities and salaries for research technicians, graduate students, and secretarial support. We would like to receive more financial support from our commodity stakeholders. This support, which has not been strong in the past, could enhance our research efforts. Facility upgrades are very important to the conduct of our research. A new 400-cow dairy is being planned which would greatly enhance our ability to conduct large-scale trials in this important industry in Washington State. We also are being encroached upon by other university entities at our beef cattle feeding and reproduction research facilities on the campus. These facilities along with our feed mill and farm shop need to be moved to the Tula Young Hastings farm with our other animal facilities.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- During (during program)
- Other (See below)

Report Date 11/10/2009 Page 22 of 146

Description

Research programs will be continuously evaluated to determine their effectiveness and probability of reaching the stated objectives. The evaluation will include annual written progress reports, quality and quantity of publications and evaluation of continued funding resources. In October 2008, the Department of Animal Sciences completed a comprehensive external review led by CSREES with the goal to help identify strengths and weaknesses within the department and implement a plan to advance the department's research accomplishments and productivity. The five member review team, chaired by Dr. Muquarrab Qureshi, National Program Leader - Animal Genetics, USDA reviewed documents submitted by the department and visited on site for five days to review academic, research and extension programs. The department plans to use the outcomes and recommendations from the review in its strategic planning and in program and resource prioritization and will revisit the report recommendations at yearly intervals. The review report has also been provided to college and university administrators.

2. Data Collection Methods

- Journals
- Portfolio Reviews
- Other (Grant dollars)

Description

There is an accounting of grants submitted, grants funded, and peer review publications. The faculty are reviewed on their annual accomplishments reports, and their department summaries. The aggreagte statistics are used as part of the ARC review of the Program.

Report Date 11/10/2009 Page 23 of 146

V(A). Planned Program (Summary)

Program #3

1. Name of the Planned Program

Western Regional Plant Introduction Station (W-006)

2. Brief summary about Planned Program

Plant genetic resources (germplasm) are vital for safeguarding the future of U.S. and global agriculture. Germplasm is the raw material that underpins the maintenance and development of crops for food, feed, and fiber production. Given the fact that most agricultural crops are not native to the United States, a continued supply of new, exotic germplasm is critical for ongoing genetic improvement of crops to support U.S. agriculture. The W-006 Regional Research Project, also known as the Western Regional Plant Introduction Station (WRPIS) manages a wide array of plant germplasm and provides stakeholders the raw materials to achieve crop improvement. These resources maintained by W-006 can be roughly divided into ten groups: 1) forage and turf grasses, 2) cool season food legumes (pea, lentil, chickpea, fava bean, lupine, etc.), 3) forage legume crops, 4) beans, 5) lettuce, 6) safflower, 7) garlic and onion relatives, 8) sugar beet, 9) selected ornamentals, and 10) selected medicinal plant species. Availability of this germplasm is critical to researchers in the Western Region who represent both public and private sectors. The WRPIS holdings account for 15.5% of 509,000 accessions in the NPGS (National Plant Germplasm System), which comprises 25 seed and clonal repositories including the related Regional Research Projects (North Central [NC-7] at Ames, IA; Northeastern [NE-9] at Geneva, NY; and Southern [S-9] at Griffin, GA). These genetic resources are necessary for continuing improvement of agricultural and horticultural crops since they contain genes conferring important traits such as resistance to pathogens and tolerance to abiotic stresses. In the 2010-2014 timeframe, the W-006 station will continue to conserve and acquire germplasm of the assigned crops species to ensure high-quality seed samples are available for active research projects. We will develop new screening methods for strategically characterizing and evaluating several crop core subsets and other priority germplasm for molecular markers, morphological descriptors, and key agronomic or horticultural traits, such as general adaptation, phenology, and growth potential. We will apply advanced DNA marker techniques to germplasm management in the areas of assessing genetic diversity, studying population structure, identifying genetic gaps and duplicate accessions of the germplasm collections. The data for both genotype and phenotype observations will be entered into the GRIN (Germplasm Resources Information Network) database, which is accessible via the Internet worldwide.

3. Program existence : Mature (More then five years)4. Program duration : Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds: No

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 24 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
201	Plant Genome, Genetics, and Genetic Mechanisms			10%	
202	Plant Genetic Resources and Biodiversity			55%	
206	Basic Plant Biology			10%	
211	Insects, Mites, and Other Arthropods Affecting Plants			10%	
212	Pathogens and Nematodes Affecting Plants			10%	
215	Biological Control of Pests Affecting Plants			5%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

This project promotes utilization of a wide array of plant genetic resources for grower, processor and consumer stakeholders and safeguards the genetic resources for future generations. This project is one of the first four Regional Plant Introduction Stations established in the 1950s. In terms of numbers of populations managed, the fiscal, personnel, and facility resources used and the genetic diversity addressed, it is one of the most important components of the NPGS. From 2003 to 2008, the number of accessions in the WRPIS collection has grown from 71,021 to 79,945. Our priorities have been preserving these important resources, making them available to researchers, and collecting as much evaluation data as possible for individual accessions. Project research, information documentation and germplasm conservation relate directly to all aspects of the USDA, ARS National Program Action Plan. We also provide a communication platform to promote the utilization of plant germplasm by researchers in the Western Region, particularly scientists associated with the SAES Universities. Plant germplasm resources are being used in the region to support crop development, to help to sustain small farm agriculture, to preserve endangered species, and to improve revegetation of the public lands in the Great Basin. They are also used to develop new U.S. crops, and to encourage international trading diplomacy through exchange of plant germplasm. From 2004, WRPIS distributed over 20,000 seeds samples each year to requesters from both public and private sectors and approximately one-third of these samples (varying from 5,000 to 7,000 each year) went to the Western Region. Researchers in the Western Region also request a large number of needed plant germplasm from other NPGS sites.

2. Scope of the Program

Multistate Research

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

Most agricultural crops are not native to the U.S. Thus, a continued supply of new, exotic germplasm is needed for ongoing genetic improvement of crops to support U.S. agriculture. Germplasm is required to provide the necessary genetic traits for U.S. food security, agricultural profitability, and competitiveness. The preserve plant germplasm can provide genes for specific crop species to support such efforts. Collectively, the Western Regional Plant Introduction Station (WRPIS) personnel at Pullman and other associated sites conduct one of the most extensive and well-established genetic resource management projects in the United States. Activities at the WRPIS are the collection, preservation, evaluation, distribution and research of plant germplasm.

Report Date 11/10/2009 Page 25 of 146

We utilize current technologies and information to best achieve germplasm conservation. Acquisition approaches are enhanced by the use of geographic information systems technology and global positioning system devices when planning and carrying out collecting trips. Great effort has been put forth toward preserving the genetic integrity of original collections during regeneration with morphologic genetic markers. This can be enhanced by use of PCR-based molecular markers. Fewer cycles of regeneration will reduce the risk of losing genetic diversity of the collection. Seed storage facilities are in place to allow relatively long-term storage of critical seed lots at -18° C. Regeneration population size has been increased for grass species to ensure reduction in genetic drift and loss of minor alleles. Insect pollinators are being evaluated and utilized in controlled pollination field increases. There are nine scientists in this Program, with project sites located at Pullman, Central Ferry, and Prosser, WA. The range in environments provides conditions amenable to the production of high quality seed of a wide range of plant germplasm.

2. Ultimate goal(s) of this Program

The ultimate goal is the continued maintenance of quality germplasm of the species assigned to this Station and its distribution where and when it is needed around the world. Both basic and applied research will result from the utilization of this germplasm. This includes improving cultivars and developing population structure and genetic diversity information and genomic resources such as genetic maps, DNA sequence databases, new medicinal plants and ornamental plants. We will provide quality (good viability and seed integrity) germplasm, free of charge, to researchers in all areas of plant science worldwide. Plant Introduction material is and will continue to be used in the development of superior cultivars for use in agriculture. Enhanced productivity, nutritional value and alternate use of plant material will result from the use of germplasm maintained at the WRPIS. Relevant research at this station and others will result in improved efficiency in conserving the widest possible genetic base for each taxa.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

V	Exte	nsion	Research	
Year	1862	1890	1862	1890
2010	0.0	0.0	3.5	0.0
2011	0.0	0.0	3.5	0.0
2012	0.0	0.0	3.5	0.0
2013	0.0	0.0	3.5	0.0
2014	0.0	0.0	3.5	0.0

V(F). Planned Program (Activity)

1. Activity for the Program

We will conserve the current germplasm collections, manage associated information and acquire new entries whenever possible. The outcome is the continued provision of quality germplasm of the species maintained by W-006 to researchers worldwide. Both basic and applied research will result from the utilization of this germplasm. This includes improving cultivars and determining population structure and genetic diversity information and developing genomic resources such as genetic maps, DNA sequence databases, new medicinal plants and ornamental plants. We will evaluate priority crop core subsets and other selected germplasm with morphological descriptors, and describe key agronomic or horticultural traits, such as general adaptation, phenology, and growth potential. We will identify accessions with desirable economical traits for multiple location tests and potential release to broaden the genetic base of breeding gene pools. We will refine and establish regeneration protocols for efficiently and effectively regenerating insect-pollinating germplasm accessions of various crop groups; monitor potentially pathogenic microorgamisms such as fungi and viruses, and ensure the health of the germplasm collection. We will apply molecular marker techniques to assess diversity, detect duplicated accessions, identify taxa that were difficult to classify with morphological characteristics and associate DNA polymorphism with variations of important economical traits in selected crops. We will strategically expand the genetic diversity in the WRPIS collection and improve associated information for priority cool season food and forage legumes, beans, turf and forage grasses, native rangeland plants, oilseed, vegetable, ornamental, medicinal, and other specialty and industrial crop genetic resources. We will promote the use of the diverse germplasm collections in the NPGS to reduce crop genetic vulnerability and sustain crop production within the Western Region, within the United States and throughout the world, employ different avenues of technology transfer in the form of the Internet-accessible database, research publications and professional conferences to encourage information sharing among scientists and coordinate plant germplasm distribution to researchers worldwide for future crop development.

Report Date 11/10/2009 Page 26 of 146

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension				
Direct Methods	Indirect Methods			
Demonstrations	Web sitesOther 1 (Scientific publications)			

3. Description of targeted audience

The target audience for this program is plant researchers.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	30	2000	150	150
2011	30	2500	150	150
2012	30	3000	200	200
2013	30	3000	200	200
2014	30	3000	200	200

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0 **2011**:0

2012:0

2013:0

2014:0

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	10	3	0
2011	10	3	0
2012	10	3	0
2013	10	3	0
2014	10	3	3

V(H). State Defined Outputs

1. Output Target

Peer reviewed journal articles

2010 10 **2011** 10 **2012** :10 **2013** 10 **2014** 10

Report Date 11/10/2009 Page 27 of 146

• Graduate students supported on Agricultural Research Center or other grant funds

2010 .1 **2011** .1 **2012** .1 **2013** .1 **2014** .1

Report Date 11/10/2009 Page 28 of 146

V(I). State Defined Outcome

O. No	Outcome Name		
1	Completion and publication of our work in peer reviewed journals		
2	Continued distribution of valuable germplasm and information		
3	Development of valuable germplasm		
4	Continued distribution of valuable germplasm		
5	Development of new collaborative projects with state federal and international research scientists		
6	Continued provision of quality germplasm of the species maintained at the Pullman site and delivered to researchers worldwide		
7	Basic and applied research resulting from the sharing of germplasmproduction of genetic maps, analyses of diversity, new medicinal plants, ornamentals,etc.		
8	Restoration and re-patriotization of germplasm to seed banks in countries of origin. [This is difficult to predict.]		

Report Date 11/10/2009 Page 29 of 146

Outcome #1

1. Outcome Target

Completion and publication of our work in peer reviewed journals

2. Outcome Type: Change in Knowledge Outcome Measure

2010 :10 **2011** : 10 **2012** : 10 **2013** : 10 **2014** : 0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 206 Basic Plant Biology
- 211 Insects, Mites, and Other Arthropods Affecting Plants
- 212 Pathogens and Nematodes Affecting Plants
- 215 Biological Control of Pests Affecting Plants

Outcome #2

1. Outcome Target

Continued distribution of valuable germplasm and information

2. Outcome Type: Change in Knowledge Outcome Measure

2010:18000 **2011**:18000 **2012**:18000 **2013**:18000 **2014**:0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 206 Basic Plant Biology
- 211 Insects, Mites, and Other Arthropods Affecting Plants
- 212 Pathogens and Nematodes Affecting Plants
- 215 Biological Control of Pests Affecting Plants

Outcome #3

1. Outcome Target

Development of valuable germplasm

2. Outcome Type : Change in Action Outcome Measure

2010 :1 **2011** :1 **2012** :1 **2013** :1 **2014** :0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 201 - Plant Genome, Genetics, and Genetic Mechanisms

Report Date 11/10/2009 Page 30 of 146

- 202 Plant Genetic Resources and Biodiversity
- 215 Biological Control of Pests Affecting Plants

Outcome #4

1. Outcome Target

Continued distribution of valuable germplasm

2. Outcome Type: Change in Action Outcome Measure

2010 :18000 **2011** : 18000 **2012** : 18000 **2013** :18000 **2014** :0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 202 Plant Genetic Resources and Biodiversity
- 215 Biological Control of Pests Affecting Plants

Outcome #5

1. Outcome Target

Development of new collaborative projects with state federal and international research scientists

2. Outcome Type: Change in Action Outcome Measure

2010 3 **2011** : 3 **2012** : 3 **2013** 3 **2014** : 0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 206 Basic Plant Biology
- 211 Insects, Mites, and Other Arthropods Affecting Plants
- 212 Pathogens and Nematodes Affecting Plants
- 215 Biological Control of Pests Affecting Plants

Outcome #6

1. Outcome Target

Continued provision of quality germplasm of the species maintained at the Pullman site and delivered to researchers worldwide

2. Outcome Type : Change in Condition Outcome Measure

2010 :18000 **2011** : 18000 **2012** : 18000 **2013** : 18000 **2014** : 0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity

Report Date 11/10/2009 Page 31 of 146

• 215 - Biological Control of Pests Affecting Plants

Outcome #7

1. Outcome Target

Basic and applied research resulting from the sharing of germplasm--production of genetic maps, analyses of diversity, new medicinal plants, ornamentals, etc.

2. Outcome Type: Change in Condition Outcome Measure

2010 :12 **2011** : 12 **2012** : 12 **2013** :12 **2014** :0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity

Outcome #8

1. Outcome Target

Restoration and re-patriotization of germplasm to seed banks in countries of origin. [This is difficult to predict.]

2. Outcome Type: Change in Condition Outcome Measure

2010 ① **2011** : 0 **2012** : 0 **2013** ① **2014** : 0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 206 Basic Plant Biology

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Appropriations changes
- Government Regulations
- Competing Public priorities
- Public Policy changes

Description

The major factor that will hinder or limit the success of this program is the reduction of fiscal resources. This is dependent on the political environment over which we have no control. Environmental concerns are annual, in that there is a significant portion of the program that is done in the field, but these are constraints that are and always have been dealt with each year. This project supports (15%) a larger USDA, ARS, program, but the coordination and collaboration with the SAES is critical to the continued success and productivity of the entire effort. The major factor that will hinder or limit the success of this program is the reduction of fiscal resources.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- During (during program)
- Before-After (before and after program)

Report Date 11/10/2009 Page 32 of 146

Description

{NO DATA ENTERED}

2. Data Collection Methods

- Observation
- Sampling

Description

(NO DATA ENTERED)

Report Date 11/10/2009 Page 33 of 146

V(A). Planned Program (Summary)

Program #4

1. Name of the Planned Program

Program in Plant Pathology

2. Brief summary about Planned Program

Washington State has the second most diverse agricultural production in the U.S. and consequently, the number and types of pathogens causing disease on its crops is also large. This Research Program supports the agricultural, forestry, horticultural, seed, and nursery enterprises of the state, nation, and world. Research activities are grouped by crop focus and scientific expertise and all faculty members in the Department of Plant Pathology have a research appointment and are expected to contribute to the generation of new knowledge. Several host groups receive specific attention from one or more individuals including flower bulbs, forest trees, legumes, mint, potatoes, small grains, tree fruits, and vegetables. Research activities in the department fall into three broad areas: Biology of disease-causing organisms; Ecology and epidemiology of plant diseases; and Detection of disease-causing organisms and control of plant diseases. The activities range from basic studies of disease biology, host-parasite interactions, and disease forecasting to applied research directed at disease control practices including chemical, cultural, biological, and disease resistance strategies.

3. Program existence : Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds : Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
201	Plant Genome, Genetics, and Genetic Mechanisms			3%	
203	Plant Biological Efficiency and Abiotic Stresses Affecting Plants			1%	
206	Basic Plant Biology			1%	
212	Pathogens and Nematodes Affecting Plants			90%	
216	Integrated Pest Management Systems			5%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Plant diseases cause direct economic losses to crops through reduced production and decreased quality of the harvested commodity. Plant pathogens can also cause indirect losses because of restricted trade and commerce that may occur because of their presence in a state or region. For example, nursery trade in some areas is restricted because Phytophthora ramorum,

Report Date 11/10/2009 Page 34 of 146

the cause of Sudden Oak Death, is present in the region. Consequently, the efforts of individuals involved in this Program in controlling both the direct losses attributable to disease and eradication of plant pathogens from production areas are of primary importance to farmers and those engaged in trade, and secondarily to consumers as a result of higher food and commodity prices. Many producer organizations recognize the need for ongoing research to develop new strategies for controlling plant disease and they provide funds to conduct research. Likewise, many state and federal government programs exist to provide funding to conduct research on plant diseases because of their recognized importance to food security. This Program has a long history of providing applied, problem-solving research for the citizens of Washington State, and of providing basic information to science.

2. Scope of the Program

- In-State Research
- Integrated Research and Extension
- Multistate Extension
- Multistate Integrated Research and Extension
- Multistate Research
- In-State Extension

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

This plan is based on the assumption of level funding for the next 5 years, with a possibility of limited internal reallocation of resources to meet specific goals. A major assumption is that plant pathologists will continue to be required by the agricultural and landscape enterprises locally, nationally, and internationally. This Program will continue to serve the agricultural and landscape industries of Washington through applied and basic research and extension activities.

2. Ultimate goal(s) of this Program

The ultimate goals of this Program are to develop environmentally sound agricultural production systems, environmentally friendly and effective disease control, and to increase our understanding of pathogens and their interactions with plants and the environment.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Year	Exte	nsion	Re	search
	1862	1890	1862	1890
2010	0.0	0.0	67.8	0.0
2011	0.0	0.0	67.8	0.0
2012	0.0	0.0	67.8	0.0
2013	0.0	0.0	67.8	0.0
2014	0.0	0.0	67.8	0.0

V(F). Planned Program (Activity)

1. Activity for the Program

Research and extension activities include preparing grant proposals, designing and carrying out experiments to address basic and applied aspects in plant pathology. These experiments will be conducted in laboratories, greenhouses, and in field plots. Results of these studies will be summarized, and analyzed statistically, and disseminated to producers in the state, to the lay public, and to other scientists in the discipline and in other disciplines through oral presentations at meetings, field plot tours, extension bulletins, scientific publications, newsletters, and electronically through websites. Peer-reviewed scientific papers, popular press articles, and book chapters will be published. Data will be provided to support registration of crop protection chemicals. Graduate students will be trained to conduct and disseminate research.

Report Date 11/10/2009 Page 35 of 146

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension				
Direct Methods	Indirect Methods			
 Group Discussion Demonstrations One-on-One Intervention Education Class Workshop Other 1 (Field plot tours/Field days) 	 Newsletters Public Service Announcement Other 1 (Scientific publications) Web sites 			

3. Description of targeted audience

Targeted audience: 1) Primary producers of and dealers involved with trade of agricultural, forestry, horticultural, seed, and nursery commodities produced in the state; Homeowners and policy makers with need for plant health information; and 2) other scientists conducting related research. Extension specialists and teachers involved in transmitting information to the public and students.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	13	26	0	0
2011	14	28	0	0
2012	15	30	0	0
2013	15	30	0	0
2014	15	30	0	0

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0 **2011**:0 **2012**:0 **2013**:0 **2014**:0

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	61	29	90
2011	63	30	93
2012	63	31	94
2013	60	30	90
2014	60	30	90

Report Date 11/10/2009 Page 36 of 146

V(H). State Defined Outputs

1. Output Target

• Peer reviewed journal articles

2010 61 **2011** 63 **2012** :63 **2013** 60 **2014** 60

• Graduate students supported by experiment station funds

2010 29 **2011** 30 **2012** :31 **2013** 30 **2014** 30

Report Date 11/10/2009 Page 37 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Increased number and quality of publications
2	Increased graduate student enrollment
3	Reduced Fungicide Use

Report Date 11/10/2009 Page 38 of 146

Outcome #1

1. Outcome Target

Increased number and quality of publications

2. Outcome Type: Change in Knowledge Outcome Measure

2010 61 **2011** : 63 **2012** : 63 **2013** 60 **2014** : 60

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 203 Plant Biological Efficiency and Abiotic Stresses Affecting Plants
- 206 Basic Plant Biology
- 212 Pathogens and Nematodes Affecting Plants
- 216 Integrated Pest Management Systems

Outcome #2

1. Outcome Target

Increased graduate student enrollment

2. Outcome Type: Change in Action Outcome Measure

2010 29 **2011** : 30 **2012** : 31 **2013** 30 **2014** : 30

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 203 Plant Biological Efficiency and Abiotic Stresses Affecting Plants
- 206 Basic Plant Biology
- 212 Pathogens and Nematodes Affecting Plants
- 216 Integrated Pest Management Systems

Outcome #3

1. Outcome Target

Reduced Fungicide Use

2. Outcome Type: Change in Condition Outcome Measure

2010 0 **2011** : 0 **2012** : 0 **2013** 0 **2014** : 0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 212 Pathogens and Nematodes Affecting Plants
- 216 Integrated Pest Management Systems

Report Date 11/10/2009 Page 39 of 146

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Economy
- Natural Disasters (drought, weather extremes, etc.)
- Public Policy changes
- Competing Public priorities
- Appropriations changes

Description

As a public institution, all programs are affected by changes in appropriations, public policy and competing public priorities. We depend on allocation of public funds to conduct parts of our mission and changes in the allocation for any reason can have a significant impact on the program. A reduced allocation would most likely result in a reduction in technical support staff that would reduce our capacity to complete the objectives of our programs. In contrast, increased allocations would allow us to add capacity and complete our objectives sooner and/or add objectives not part of the current plan. In particular, the number of graduate students we can train and the number and quality of papers we publish are likely to be influenced by available funds.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- Other (After)
- During (during program)

Description

Evaluation will take place annually. Accomplishments of the faculty in addressing the short- and medium-term goals will be summarized and reported. Progress toward the long-term goal will be summarized at the end of the program.

2. Data Collection Methods

- Unstructured
- Journals

Description

The Department Chair meets annually with each faculty member to discuss accomplishments. There is an accounting of grants submitted, grants funded, and peer reviewed publications through the WSU WORQS on-line database, which includes information about each faculty member. The data is collected through annual faculty accomplishment reports and department summary reports.

Report Date 11/10/2009 Page 40 of 146

V(A). Planned Program (Summary)

Program #5

1. Name of the Planned Program

Program in Economic Sciences

2. Brief summary about Planned Program

This program of economic research resides in a university environment with limited institutional research support. Researchers are responsible for raising the large majority of needed research funds from extramural sources. As a result, faculty members are expected to obtain extramural funding to support all aspects of their research including equipment, travel, supplies, and the like. Faculty members are also expected to be entrepreneurial in their support and mentoring of graduate students. All faculty are expected to conduct a rigorous research program addressing priority issues and problems affecting the agricultural sector and issues relating to natural resources and the environment.

3. Program existence : Mature (More then five years)4. Program duration : Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds : Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 41 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
601	Economics of Agricultural Production and Farm Management			5%	
602	Business Management, Finance, and Taxation			5%	
603	Market Economics			20%	
604	Marketing and Distribution Practices			5%	
605	Natural Resource and Environmental Economics			20%	
606	International Trade and Development			5%	
607	Consumer Economics			10%	
609	Economic Theory and Methods			10%	
610	Domestic Policy Analysis			10%	
901	Program and Project Design, and Statistics			10%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

The long run sustainability of the agricultural sector, the natural resource base of the region, and the environment are vitally important issues that interest and affect farmers, ranchers, industry groups, government policy makers, and the general public. Invariably, the issue of sustainability goes well beyond the physical and biological factors that affect sustainability, and are driven by economic costs, benefits, and incentives that guide agricultural production decisions, the management and use of resources, and the stewardship of the environment. Incentives can be derived from markets, both domestic and international, as well as from government intervention in the way of policies, laws, and regulations. The methods and tools of economic research are ideally suited for analyzing benefits, costs, and tradeoffs, denominated in terms of profitability and overall social welfare, resulting from agricultural and non-agricultural business decisions, natural resource access and allocation decisions, government regulations of businesses, natural resources, and the environment, and market and non-market forces that affect the operation of State and regional economies. Stakeholders with an interest in the issues addressed in the economic research program envisioned here encompass literally every citizen of the State and region, every agricultural and non-agricultural business enterprise, and the governments of the State and region. The long run sustainability, security, and cost of the food supply, the availability and quality of natural resources, and the environment can affect the quality of life and the

Report Date 11/10/2009 Page 42 of 146

efficiency of business enterprises that operate within the region. The common long run interests of all of these stakeholders are ultimately served by a better-informed decision environment supported by a clear understanding of the economic and social impacts of business behavior and public policy choices, the basis of economic vitality, the use of natural resources, and the care of the environment. All of the endeavors envisioned in this research agenda contribute in various ways to creating a more-informed decision environment.

2. Scope of the Program

- In-State Research
- Integrated Research and Extension
- Multistate Research

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

Major assumptions for the proposed research program to be successful in generating economic intelligence on the range of issues being investigated include: (1) continuation or expansion of current levels of faculty FTEs and operational funding in support of research efforts, (2) continuation or expansion of infrastructure support within the School and university in terms of facilities and services, as well as staff support, and (3) continuation or expansion in the level of Graduate Research Assistantship support for the research programs of School faculty. Faculty in this research program are expected to supplement institutional funding in support of the research agenda by securing external grant funds for additional graduate assistantships, data collection, supplemental computational needs in the way of specialized software and hardware, travel, supplies, and other supportive materials and services. It is also assumed that faculty members performing research under this program will successfully seek interdisciplinary collaboration on topics that would benefit from such collaboration, potentially resulting in both a broader and deeper analysis of the issues involved. Decreases in state and/or federal research and operations funding, or decreases in the availability or amount of extramural funding would adversely affect research productivity, and would likely prevent some components of the research program to be researched at all.

2. Ultimate goal(s) of this Program

The overall goal of this research program is to generate economic intelligence that will lead to more profitable farm, ranch, and agribusiness enterprises, enhance the overall sustainability of the agricultural sector, promote a proper balance between the use and protection of natural resources, foster appropriate stewardship of the environment, and facilitate more informed, effective, and efficient decision making by individuals, businesses, and government policy makers.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Vaar	Exte	nsion	Re	search
Year	1862	1890	1862	1890
2010	0.0	0.0	21.4	0.0
2011	0.0	0.0	21.4	0.0
2012	0.0	0.0	21.4	0.0
2013	0.0	0.0	21.4	0.0
2014	0.0	0.0	21.4	0.0

V(F). Planned Program (Activity)

1. Activity for the Program

The expected outputs from this research will take a number of different forms. One form is the publication of high quality peer reviewed publications, which will validate the scientific merit of the research performed under this project, and will stand as long term contributions to the inventory of knowledge in the respective areas of inquiry. It is also expected that a number of research bulletins, research grant reports, and both peer-reviewed and invited presentations disseminating the results of the research will be delivered to appropriate clientele by faculty analysts themselves. In addition to outreach efforts by research faculty, which is an expectation of all faculty in the School of Economic Sciences, the research results will also be translated into an outreach

Report Date 11/10/2009 Page 43 of 146

and engagement effort through collaboration with Extension faculty, and timely and relevant deliverables in this regard will include Extension bulletins, workshops, downloadable data, tables, and reports, and other outreach and engagement activities with appropriate clientele. It is expected that the knowledge disseminated through the aforementioned mechanisms to appropriate decisions makers in various segments of the agricultural sector, government, and general society will generate an appropriately informed decision environment and will contribute sufficient insights into the economic and societal consequences of decisions so that actual decisions made will enhance the sustainability of the agricultural sector, balance the need for uses and preservation of natural resources, and further good stewardship of the environment.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension			
Direct Methods Indirect Methods			
 One-on-One Intervention Workshop 	Other 2 (Research & Grant Reports) Other 1 (Extension Bulletins)		
 Group Discussion Other 1 (Research Presentations)	Web sites		

3. Description of targeted audience

The target audience of the School of Economic Sciences includes decision makers in various segments of the agricultural sector, government and the general society. Our work will also influence economists in academia nationally and internationally.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	1000	1500	0	0
2011	1000	1500	0	0
2012	1000	1500	0	0
2013	1000	1500	0	0
2014	1000	1500	0	0

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0

2011:0

2012:0

2013:0

2014:0

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	24	9	33
2011	26	10	36
2012	28	11	39
2013	30	12	42
2014	32	12	44

Report Date 11/10/2009 Page 44 of 146

V(H). State Defined Outputs

1. Output Target

• Peer reviewed journal articles

2010 24 **2011** 26 **2012** :28 **2013** 30 **2014** 35

• Graduate students supported by experiment station and grant funds

2010 40 **2011** 41 **2012** :42 **2013** 43 **2014** :44

Report Date 11/10/2009 Page 45 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Number and Quality/reputation of refereed journal publications (mid-tier field/economics journals and
	above.
2	Number and quality of other research bulletins, reports and presentations at major conferences.
3	Degree of contribution of fundamental knowledge within the fields researched (percent increase).
4	Number and value of external grants in support of the research program (units are dollars).
5	Contribution to improved/new research methods/tools (percent of output).
6	Relevant knowledge generated for use by policy and decision makers (percent of output).
7	Number of graduate students trained and placed in the job market.
8	Degree to which overall research funding is increased (percent).
9	Number of additional institutionally funded and externally funded GRAs that are studying and researching in
	the School.

Report Date 11/10/2009 Page 46 of 146

Outcome #1

1. Outcome Target

Number and Quality/reputation of refereed journal publications (mid-tier field/economics journals and above.

2. Outcome Type : Change in Knowledge Outcome Measure

2010 24 **2011** : 26 **2012** : 28 **2013** 30 **2014** : 32

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 603 Market Economics
- 605 Natural Resource and Environmental Economics
- 606 International Trade and Development
- 607 Consumer Economics
- 609 Economic Theory and Methods
- 610 Domestic Policy Analysis
- 901 Program and Project Design, and Statistics

Outcome #2

1. Outcome Target

Number and quality of other research bulletins, reports and presentations at major conferences.

2. Outcome Type : Change in Knowledge Outcome Measure

2010 30 **2011** : 32 **2012** : 34 **2013** 35 **2014** : 35

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 601 Economics of Agricultural Production and Farm Management
- 603 Market Economics
- 605 Natural Resource and Environmental Economics
- 606 International Trade and Development
- 607 Consumer Economics
- 609 Economic Theory and Methods
- 610 Domestic Policy Analysis
- 901 Program and Project Design, and Statistics

Outcome #3

1. Outcome Target

Degree of contribution of fundamental knowledge within the fields researched (percent increase).

Report Date 11/10/2009 Page 47 of 146

2. Outcome Type : Change in Knowledge Outcome Measure

2010 5 **2011** : 5 **2012** : 5 **2013** 5 **2014** : 5

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 601 Economics of Agricultural Production and Farm Management
- 603 Market Economics
- 605 Natural Resource and Environmental Economics
- 606 International Trade and Development
- 607 Consumer Economics
- 609 Economic Theory and Methods
- 610 Domestic Policy Analysis
- 901 Program and Project Design, and Statistics

Outcome #4

1. Outcome Target

Number and value of external grants in support of the research program (units are dollars).

2. Outcome Type : Change in Knowledge Outcome Measure

2010 :1100000 **2011** : 1200000 **2012** : 1300000 **2013** :1500000 **2014** :1500000

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 601 Economics of Agricultural Production and Farm Management
- 603 Market Economics
- 605 Natural Resource and Environmental Economics
- 606 International Trade and Development
- 607 Consumer Economics
- 609 Economic Theory and Methods
- 610 Domestic Policy Analysis
- 901 Program and Project Design, and Statistics

Outcome #5

1. Outcome Target

Contribution to improved/new research methods/tools (percent of output).

2. Outcome Type : Change in Knowledge Outcome Measure

2010 5 **2011** : 5 **2012** : 5 **2013** 5 **2014** : 5

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

Report Date 11/10/2009 Page 48 of 146

- 601 Economics of Agricultural Production and Farm Management
- 603 Market Economics
- 605 Natural Resource and Environmental Economics
- 606 International Trade and Development
- 607 Consumer Economics
- 609 Economic Theory and Methods
- 610 Domestic Policy Analysis
- 901 Program and Project Design, and Statistics

Outcome #6

1. Outcome Target

Relevant knowledge generated for use by policy and decision makers (percent of output).

2. Outcome Type: Change in Knowledge Outcome Measure

2010 :10 **2011** : 10 **2012** : 10 **2013** : 10 **2014** : 10

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 601 Economics of Agricultural Production and Farm Management
- 603 Market Economics
- 605 Natural Resource and Environmental Economics
- 606 International Trade and Development
- 607 Consumer Economics
- 609 Economic Theory and Methods
- 610 Domestic Policy Analysis
- 901 Program and Project Design, and Statistics

Outcome #7

1. Outcome Target

Number of graduate students trained and placed in the job market.

2. Outcome Type : Change in Action Outcome Measure

2010 :14 **2011** : 15 **2012** : 15 **2013** :15 **2014** : 15

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 601 Economics of Agricultural Production and Farm Management
- 603 Market Economics
- 605 Natural Resource and Environmental Economics
- 606 International Trade and Development

Report Date 11/10/2009 Page 49 of 146

- 607 Consumer Economics
- 609 Economic Theory and Methods
- 610 Domestic Policy Analysis
- 901 Program and Project Design, and Statistics

Outcome #8

1. Outcome Target

Degree to which overall research funding is increased (percent).

2. Outcome Type: Change in Action Outcome Measure

2010 :10 **2011** : 10 **2012** : 10 **2013** : 10 **2014** : 10

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 601 Economics of Agricultural Production and Farm Management
- 603 Market Economics
- 605 Natural Resource and Environmental Economics
- 606 International Trade and Development
- 607 Consumer Economics
- 609 Economic Theory and Methods
- 610 Domestic Policy Analysis
- 901 Program and Project Design, and Statistics

Outcome #9

1. Outcome Target

Number of additional institutionally funded and externally funded GRAs that are studying and researching in the School.

2. Outcome Type: Change in Condition Outcome Measure

2010 2 **2011** : 3 **2012** : 4 **2013** 5 **2014** : 5

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 601 Economics of Agricultural Production and Farm Management
- 603 Market Economics
- 605 Natural Resource and Environmental Economics
- 606 International Trade and Development
- 607 Consumer Economics
- 609 Economic Theory and Methods
- 610 Domestic Policy Analysis
- 901 Program and Project Design, and Statistics

Report Date 11/10/2009 Page 50 of 146

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Competing Programmatic Challenges
- Appropriations changes
- Government Regulations
- Economy
- Public Policy changes
- Competing Public priorities

Description

The environment in which the planned research program resides, and the factors that frame that environment, can affect the outcomes of the planned research program in two general ways. One concerns the effect of the program environment on the ability of researchers to command sufficient resources, and avoid constraints and encumbrances, in order to be able to freely conduct and successfully complete research endeavors. The other concerns the potential changing priorities of problems and issues as circumstances change with regard to the working of the economy and the nature of government laws, policies and regulations. The program of research resides in an environment of scant ongoing institutional research funding as well as limited institutional resources for updating research infrastructure to facilitate modern research capabilities. Beyond a faculty member's office and nominal support in terms of telephone, internet access, incidental office supplies, and moderately capable computer support, any appreciable enhancement in the level of research funds in support of a faculty member's research program must generally be secured by the faculty members themselves through extramural grants. In the absence of additional institutional support, a program environment restriction in the sense of reduced availability and/or reduced success in terms of extramural grant supplementation of research resources will act to reduce the ability of affected faculty members to achieve those components of their research programs that require additional resources for effective or successful completion, and alter research outcomes accordingly. The research program also resides within a dynamically fluctuating environment of changing markets and market conditions, a changing economy, changing external influences to the economy, and a changing inventory of effective government laws, policies, and regulations. As factors affecting the State and regional markets, economies, and society change, the problems, issues, and priorities relating to them change as well. Thus, the types of research outcomes that will benefit the agricultural sector, the management of natural resources, and the state of the environment might appropriately change within the research agenda to respond to changing needs of clientele resulting from a changed program environment.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- During (during program)
- Before-After (before and after program)

Description

Prior to the start of any program, each Hatch project proposal that is submitted to the Director of the School is first subjected to peer review by a minimum of two other PhD economists in or outside of the SES, the objective being to evaluate the relevance of the proposed problems or issues to be researched by the project, to evaluate the command of the problem context and the relevant literature by the proposer, to check the appropriateness of the proposed research methodology to be used in addressing the problems or issues stated, and finally, to verify the adequacy of the stated outcomes of the research relative to the goals stated in the proposal, During the time when the program is active, the progress of each faculty member with a Hatch project is reviewed annually by the Director of the School, followed by the Dean and Directors of the College of Agricultural, Human and Natural Resource Sciences. Measures of progress on Hatch projects include the number of refereed journal articles produced, the quality of other peer and non-peer reviewed research bulletins, reports and presentations generated, the level of extramural funding received from external sources in support of the research program, and the number of masters and doctoral students completing their degrees that have theses or dissertations that in part, or in whole, contribute research addressing the goals set forth in the Hatch project proposal. Also considered is the degree to which program research results have been disseminated effectively to clientele through outreach and engagement efforts, the latter often in collaboration with Extension faculty.

2. Data Collection Methods

Report Date 11/10/2009 Page 51 of 146

- Structured
- Whole population
- Observation
- On-Site
- Sampling

Description

{NO DATA ENTERED}

Report Date 11/10/2009 Page 52 of 146

V(A). Planned Program (Summary)

Program #6

1. Name of the Planned Program

Program in Statistics

2. Brief summary about Planned Program

The Department of Statistics does theoretical and applied research in most areas of statistics applicable to the agricultural, biological and engineering sciences. However, the two projects currently being conducted by Departmental faculty supported in part by Hatch funds deal with binary data analysis and resource selection. The first emphasizes the development of more powerful methods for analyzing data arising from plant and animal experiments with 0-1 observations while the second deals with the development of more appropriate methods for modeling wildlife and plant distributions, as well as how animals use terrestrial habitats and food.

3. Program existence : Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds: Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
901	Program and Project Design, and Statistics	100%		100%	
	Total	100%		100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

The project on binary data analysis deals with the development of better methods to analyze data arising from experiments where observational results consist of an animal or plant either exhibiting some characteristic of interest or not after the experiment is performed. The results of this project will allow animal and plant scientists to more efficiently design such experiments as well as obtain more information from data generated. The project on the evaluation of methods to analyze resource selection data is designed to determine which resource allocation data techniques work best in differing circumstances. The results obtained from this research will help wildlife managers make more intelligent decisions about how to distribute resources based on available data.

2. Scope of the Program

In-State Research

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

The faculty members conducting the two projects described above both have extensive backgrounds in the relevant research areas and both have previously published refereed journal articles in these areas. Because of their backgrounds, both will make significant progress on the research being conducted.

2. Ultimate goal(s) of this Program

The ultimate goal of both projects is to provide appropriate scientists and statistical consumers with better and more powerful statistical methods with which to make more intelligent decisions based on available data or to better plan and analyze data

Report Date 11/10/2009 Page 53 of 146

arising from their experiments.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Year	Exte	nsion	Re	search
Tear	1862	1890	1890 1862 1890	
2010	0.3	0.0	0.8	0.0
2011	0.3	0.0	0.8	0.0
2012	0.3	0.0	0.8	0.0
2013	0.3	0.0	0.8	0.0
2014	0.3	0.0	0.8	0.0

V(F). Planned Program (Activity)

1. Activity for the Program

It is expected that the results obtained from each project will be disseminated to other scientists at professional meetings through contributed or invited presentations as well as through peer reviewed publications resulting from the research conducted.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension			
Direct Methods	Indirect Methods		
 Other 2 (Invited Presentations) Other 1 (Professional meetings) 	Other 1 (Peer Reviewed Publications)		

3. Description of targeted audience

The target audience is other academic statisticians, biologists and scientists of other disciplines who are consumers of knowledge.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults Direct Contacts Youth		Indirect Contacts Youth	
Year	Target	Target	Target	Target	
2010	20	40	0	0	
2011	20	40	0	0	
2012	20	40	0	0	
2013	20	40	0	0	
2014	20	40	0	0	

Report Date 11/10/2009 Page 54 of 146

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0

2011 :0

2012:0

2013:0

2014:0

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	1	0	1
2011	2	0	2
2012	1	0	1
2013	1	0	1
2014	1	0	1

V(H). State Defined Outputs

1. Output Target

Peer reviewed publications

2010:1

2011 2

2012:1

2013:1

2014 :1

Report Date 11/10/2009 Page 55 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Immediate dissemination of knowledge gained from research projects through talks presented and peer reviewed publications
2	Number of peer reviewed journal and proceedings papers, number of talks given.
3	Implementation of statistical methodologies and procedures derived from individual research projects in our department by other scientists.
4	Number of citations for articles published which are based on individual research projects.

Report Date 11/10/2009 Page 56 of 146

Outcome #1

1. Outcome Target

Immediate dissemination of knowledge gained from research projects through talks presented and peer reviewed publications

2. Outcome Type: Change in Knowledge Outcome Measure

2010 2 **2011** : 1 **2012** : 1 **2013** : 1 **2014** : 1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 901 - Program and Project Design, and Statistics

Outcome #2

1. Outcome Target

Number of peer reviewed journal and proceedings papers, number of talks given.

2. Outcome Type: Change in Knowledge Outcome Measure

2010 :1 **2011** :2 **2012** :1 **2013** :1 **2014** :1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 901 - Program and Project Design, and Statistics

Outcome #3

1. Outcome Target

Implementation of statistical methodologies and procedures derived from individual research projects in our department by other scientists.

2. Outcome Type: Change in Condition Outcome Measure

2010 :1 **2011** :2 **2012** :1 **2013** :1 **2014** :1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 901 - Program and Project Design, and Statistics

Outcome #4

1. Outcome Target

Number of citations for articles published which are based on individual research projects.

2. Outcome Type : Change in Condition Outcome Measure

2010 5 **2011** : 5 **2012** : 5 **2013** 5 **2014** : 5

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 901 - Program and Project Design, and Statistics

Report Date 11/10/2009 Page 57 of 146

$V({\sf J})$. Planned Program (External Factors)

1. External Factors which may affect Outcomes

• Other (See below)

Description

The projects involve individual statistical research. Therefore, the completion of the projects is relatively immune to the effects of external factors other than possible additional faculty responsibilities such as teaching and consulting.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

During (during program)

Description

The program is reviewed by the chair and administration as part of the annual review of faculty and departments. 2. Departmental Data. 3. Journals and others.

2. Data Collection Methods

Other (See below)

Description

Simulation of data is used to assess quality of models.

Report Date 11/10/2009 Page 58 of 146

V(A). Planned Program (Summary)

Program #7

1. Name of the Planned Program

Program in Community and Rural Sociology

2. Brief summary about Planned Program

The overall goal of the department's research program is to address, within a community development context, the human aspects of the interactions between technology and the environment with respect to agricultural and natural resource use. The guiding theme of this research is human dimensions of sustainability. Most definitions of sustainability are based on the recognition that human and natural resource systems are highly interdependent. Thus, it is argued that production systems, including agri-foods systems that operate in a natural resource base, can be sustainable only if they contribute to cultural, economic, political and ecological well-being and permanence. Technological advancement can be a tool for contributing to this process when it empowers human actors to interact with the physical environment in such a way that allows for long-term well being of human communities and their ecological surroundings. Research in the Department of Community and Rural Sociology is directed towards understanding the challenges facing families and communities as they attempt to create such sustainable production systems. This includes research on the role of technology and social institutions in integrating, or failing to integrate, human, and ecological systems, as well as methods research that serves as a an analytical foundation for the larger program.

3. Program existence : Mature (More then five years)

'4. Program duration : Long-Term (More than five years)

5. Expending formula funds or state-matching funds: Yes

6. Expending other than formula funds or state-matching funds : Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
608	Community Resource Planning and Development			20%	
803	Sociological and Technological Change Affecting Individuals, Families and Communities			60%	
805	Community Institutions, Health, and Social Services			20%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

The key problem that needs to be addressed is how to assess and assist families and communities dependent on agriculture and other natural resource dependent industries in a way that will enable them to become more socially, politically and economically sustainable, while at the same time using their surrounding ecological systems in a manner that will preserve the ability of future generations to utilize their physical environment. Stakeholders for such research include farm households (including small and medium sized farms comprising the vast majority of the U.S. farm population), individual and family entrepreneurs who utilize agricultural and other natural resource commodities (such as food processing firms and lumber mills), and those who are employed in these businesses, including women and minorities that have been traditionally underserved by land grant programs. Other stakeholders are policy makers at the local, state and regional level. Unless these natural resource based industries can evolve in such as way as to minimize ecological impact while maximizing human well-being for all potential

Report Date 11/10/2009 Page 59 of 146

stakeholders, the communities in which these industries are based will weaken, with a corresponding negative impact on the lives of community residents, as well as the consuming public. One of the primary objectives of the department's research program is to assess new approaches for achieving patterns of sustainable community development. This includes an understanding of the potential role that women and minorities can play in improving the quality of human and ecological systems interaction in agricultural and natural resource industries.

2. Scope of the Program

- In-State Extension
- Multistate Research
- In-State Research
- Integrated Research and Extension

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

One of the key assumptions of the program is the importance of thinking holistically about agri-food and other natural resource based production systems. The assumption that technological solutions to agricultural and environmental problems exist in a social vacuum is rejected. A second key assumption is that stakeholder input into research programs, including input from previously under served populations, is essential for the success of the research and implementation of the proposed recommendations that flow from that research.

2. Ultimate goal(s) of this Program

The ultimate goal of this research program is the discovery of new entrepreneurial, institutional and policy strategies at the community level for improving the sustainability of agrifood, and other natural resource based industries in Washington State. Some example of those strategies that faculty are currently involved with include: (1) improved survey research methods that improve the ability of social scientists to assess current structural conditions in rural communities; (2) expanded opportunities for increasing direct market sales within communities and regions, thus enhancing the profitability of small farms and the health of local residents; (3) better knowledge of the global, national and community contexts of agrifood system change; (4) improved understanding of the role of women and minorities in assuring the sustainable use of agricultural and natural resources; (5) analysis of the impact of rural tourism and amenity activities in rural areas that are experiencing a decline in resource extractive industries; and (6) studies of the processes surrounding the adoption of alternative pest control methods by tree fruit growers who are being required to phase out their use of certain organophosphate pesticides.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Vasa	Exte	nsion	Re	search
Year	1862	1890	1862	1890
2010	0.0	0.0	2.4	0.0
2011	0.0	0.0	2.4	0.0
2012	0.0	0.0	2.4	0.0
2013	0.0	0.0	2.4	0.0
2014	0.0	0.0	2.4	0.0

V(F). Planned Program (Activity)

1. Activity for the Program

During 2008, research projects on a variety of aspects of changes in Washington agri-food systems. A survey on organic producers noted that women organic farmers placed a high value on non-pecuniary benefits of growing organically, in addition to the financial benefits, while men had a comparatively narrower view on what made farming organically desirable. Other research demonstrated that the health of community social networks plays an important positive role in the effectiveness of food banks and other institutions designed to help at-risk residents can access to food. Plans are now under way to build upon these projects and examine the complex social dimensions of how tree fruit farmers in Washington State are responding to the need

Report Date 11/10/2009 Page 60 of 146

to develop new approaches to pest management, as well as on the factors that can contribute to the success of failure of farmers, markets. The Department also continues to move forward with plans for using the internet to improve the assessment of its various projects.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension			
Direct Methods	Indirect Methods		
WorkshopEducation Class	Web sites		

3. Description of targeted audience

The target audience includes other social scientists, persons interested in sustainable agriculture, communities, agri-businesses, demographers and policy makers.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	1750	10000	0	0
2011	2000	11000	0	0
2012	2000	12000	0	0
2013	2000	13000	0	0
2014	2000	14000	0	0

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0

2011 :0

2012:0

2013:0

2014:0

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	8	6	14
2011	9	7	16
2012	10	8	18
2013	11	9	20
2014	11	10	21

V(H). State Defined Outputs

1. Output Target

Peer reviewed journal articles

Report Date 11/10/2009 Page 61 of 146

 2010 B
 2011 9
 2012 :10
 2013 :11
 2014 :11

 • Graduate students supported by Agricultural Research Center funds including grants

 2010 B
 2011 4
 2012 :4
 2013 :4
 2014 :5

Report Date 11/10/2009 Page 62 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Steady increase in the number of state residents accessing bulletins and other stakeholder directed
	publications via the department website.
2	Steady increase in number of state residents accessing survey results via the department website.

Report Date 11/10/2009 Page 63 of 146

Outcome #1

1. Outcome Target

Steady increase in the number of state residents accessing bulletins and other stakeholder directed publications via the department website.

2. Outcome Type: Change in Action Outcome Measure

2010 :10000 **2011** : 11000 **2012** : 12000 **2013** :13000 **2014** :14000

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 608 Community Resource Planning and Development
- 803 Sociological and Technological Change Affecting Individuals, Families and Communities
- 805 Community Institutions, Health, and Social Services

Outcome #2

1. Outcome Target

Steady increase in number of state residents accessing survey results via the department website.

2. Outcome Type : Change in Action Outcome Measure

2010:1250 **2011**:1500 **2012**:1750 **2013**:2000 **2014**:2250

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 608 Community Resource Planning and Development
- 803 Sociological and Technological Change Affecting Individuals, Families and Communities
- 805 Community Institutions, Health, and Social Services

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Public Policy changes
- Economy
- Competing Public priorities
- Government Regulations

Description

The external factors that may affect program factors in Community and Rural Sociology include the following areas: a) Global and National Economy; b) Public Policy Changes; c) Government Regulations; d) Competing Public Priorities; e) Population Dynamics. The external environmental factors that would be most likely to have an impact on the Department,s main program area are those economic, political and social conditions at a national and international level that have an impact on the strategic options available for farmers and other rural community entrepreneurs to improve the sustainability of their farm operations. Thus, research in the program area must constantly assess, and account for, changing national and global conditions. This includes changes in population dynamics, both at a community level and in the production sectors involved. In particular, the role of minorities and women in agricultural production is growing and must be accounted for in present and future analysis. An additional factor that could affect the success of the program will have to do with the future structural of the Department of Community and Rural Sociology within the University. A pressing need for this program area, as with many other program areas, is operating funds. Scholars in the unit are actively seeking funds, and are being sought out to engage in multidisciplinary projects. At the same time, concerns continue that the scope of the USDA-AFRI is becoming too narrow, particularly with

Report Date 11/10/2009 Page 64 of 146

respect to community development issues.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- Retrospective (post program)
- Comparisons between program participants (individuals,group,organizations) and non-participants
- During (during program)

Description

There will be comparisons between where the program operates and sites without program intervention.

2. Data Collection Methods

- Mail
- Sampling
- Whole population
- Other (Intranet)
- Structured
- Case Study

Description

Are starting Intranet Based Surveys

Report Date 11/10/2009 Page 65 of 146

V(A). Planned Program (Summary)

Program #8

1. Name of the Planned Program

Program in Agricultural Animal Health

2. Brief summary about Planned Program

The Agricultural Animal Health Program (AAHP) bridges existing segments of two Colleges, Veterinary Medicine and Agriculture Human and Natural Resource Sciences. Research efforts of the AAHP are designed to consolidate disease control efforts on behalf of the agricultural animal industries in the State of Washington. This program has the unifying purpose of responding to diseases and disease agents that threaten the well-being of food animals and the safety of food animal products through comprehensive control efforts extending from the field to the basic research laboratory. It is a multidisciplinary program with expertise in individual animal and population medicine, field epidemiology, laboratory diagnostics, and research. Unification of purpose and consolidation of efforts focuses disease control on priorities identified by the veterinary medical and animal production communities, enhances utilization of existing resources, and promotes expansion of targeted programs. Through the integrated efforts of component units, the AAHP strives to provide enhanced infrastructure for: recognition of emergent animal and public health problems; response to disease outbreaks; industry access to disease control methods and research results; international marketability and economic return to producers; and provision of a wholesome and safe food supply.

3. Program existence : Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds : Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 66 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
307	Animal Production Management Systems			10%	
308	Improved Animal Products (Before Harvest)			10%	
311	Animal Diseases			10%	
312	External Parasites and Pests of Animals			10%	
313	Internal Parasites in Animals			10%	
314	Toxic Chemicals, Poisonous Plants, Naturally Occurring Toxins, and Other Hazards Affecting Animals			10%	
403	Waste Disposal, Recycling, and Reuse			10%	
711	Ensure Food Products Free of Harmful Chemicals, Including Residues from Agricultural and Other Sources.			10%	
712	Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins			10%	
722	Zoonotic Diseases and Parasites Affecting Humans			10%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

The mission of the AAHP is to enhance the well being of agricultural animals and wholesomeness of food animal products through integrated disease diagnosis, field investigation, and research. It is given that there is a huge national concern about the wholesomeness of food animal products, their safety, and the biosecurity of animals that provide those products. Thus, efforts to ensure the highest quality must be applied in support of the consumer interests. The efforts described herein are directed at pre-harvest issues. To date, the AAHP has defined the natural occurrence and shedding patterns of E. coli O157:H7 in cattle herds and in local and regional farm environments, has recognized Salmonella typhimurium DT 104 as an emerging and zoonotic pathogen in the USA, has demonstrated contamination of feedstuffs and water sources as important factors in dissemination of zoonotic pathogens and normal flora with antimicrobial resistance, and has determined that mycoplasma mastitis is an emerging mastitis pathogen. The AAHP has taken a field based approach to research. The commercial farm becomes the experimental unit, the livestock specie the replicate. Thus although diagnostic and genomic tests may be developed in the laboratory, the basis of the development is isolation of pathogens from real-life commercial settings. The application of the intervention studies that are applied and tested subsequent to the development of laboratory tests are done with the assurance that the pre-harvest situation of interest was one that was typical of the problem at large.

Report Date 11/10/2009 Page 67 of 146

2. Scope of the Program

- In-State Research
- Integrated Research and Extension
- Multistate Research
- Multistate Integrated Research and Extension

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

The AAHP has an excellent history of research that is relevant to improving the well being of livestock in Washington State, and in ensuring the wholesomeness of their products. Thus the consumers and perhaps specifically, the stakeholders of the State, have been well rewarded for their support. The basis of that support is tax dollars that directly and indirectly fund the Colleges of Veterinary Medicine and Agriculture Human and Natural Resource Sciences. The AAHP receives financial support from both Colleges, primarily to fund core positions. The joint funding testifies to the importance the University places on the AAHP research program. Thus it could be argued that the assumption of continued support is strong, given the current University commitment. Funding support has historically been received from commodity groups, state agencies, and national research initiatives. Again, given the history of success of the Program, coupled with the need for fundamental research to ensure the wholesomeness and safety of food, suggests that the assumption that funding will continue, is well grounded. The USDA ARS targets four areas of research (Nutrition, Food Safety/Quality; Animal Production and Protection; Natural Resources and Sustainable Agricultural Systems; and Crop Production and Protection. Within those 4 areas, there are 22 Research Programs. The AAHP contributes to several of these Research Programs: Food Safety (animal and plant products), Quality and Utilization of Agricultural Products, Food Animal Production, Animal Health, Veterinary, Medical, and Urban Entomology, Animal Well-Being and Stress Control Systems, Water Quality and Management, Rangeland, Pasture, and Forages, Manure and Byproduct Utilization, Through interactions with faculty in two colleges, and several different departments (Bio-systems Engineering, Agronomy and Soil Sciences, Food Science and Human Nutrition, Animal Sciences, Veterinary Clinical Sciences and Veterinary Microbiology and Pathology), the AAHP can tap the expertise of many sciences and thus be successful in addressing the needs of the 9 Research Programs listed above.

2. Ultimate goal(s) of this Program

To enhance the well being of agricultural animals and wholesomeness of food animal products through integrated disease diagnosis, field investigation, and research.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Vasa	Exte	nsion	Re	search
Year	1862	1890	1862	1890
2010	0.0	0.0	2.0	0.0
2011	0.0	0.0	2.0	0.0
2012	0.0	0.0	2.0	0.0
2013	0.0	0.0	2.0	0.0
2014	0.0	0.0	2.0	0.0

V(F). Planned Program (Activity)

1. Activity for the Program

The following are the project studies planned for the next five years. Information will be disseminated in the form of manuscripts in research journals, lay press, and extension bulletins. Investigate the epidemiology and ecology of Salmonella enterica in and around farms. The ultimate goal is to develop strategies to prevent entry of infection to the farm and to mitigate zoonotic risk. Through molecular epidemiology, determine the antibiotic resistance elements of microbes associated with livestock, either as commensally associated flora or disease agents. Conduct bovine mastitis research to identify transmission factors for Staphylococcus aureus and Mycoplasma spp, the epidemiology, and immune responses to these agents. Develop milk tests to

Report Date 11/10/2009 Page 68 of 146

better diagnose these mastitis agents and improve management of dairy teat chapping and milking time hygiene. Identify plant toxicities, describing previously uncharacterized problems, and developing strategies for reduction of problems, including studies on pasture/animal disease interactions. Identify the determinants for regional and on-farm variation in risk for lupine-induced arthrogryposis (crooked calf disorder) in range cattle.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension			
Direct Methods	Indirect Methods		
 Group Discussion Other 1 (Address producers and industry) 	Other 1 (Extension Bulletins)Newsletters		

3. Description of targeted audience

Our target audience includes academicians, clinicians, microbiologists, public health authorities, practicing veterinarians, farmers and the general public.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	150	4000	50	100
2011	160	4000	50	100
2012	160	4000	50	100
2013	160	4000	50	100
2014	160	4000	50	100

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0 **2011**:0 **2012**:0 **2013**:0 **2014**:0

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	4	1	5
2011	4	1	5
2012	5	1	6
2013	5	1	6
2014	5	1	6

Report Date 11/10/2009 Page 69 of 146

V(H). State Defined Outputs

1. Output Target

• Peer reviewed journal articles

2010 5 **2011** 5 **2012** :6 **2013** 6 **2014** 6

• Graduate students supported on agricultural research center funds and grants

2010 6 **2011** 6 **2012** 6 **2013** 6 **2014** 6

Report Date 11/10/2009 Page 70 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Define natural occurance and shedding patterns of E. coli O157:H7
2	Determine the extent of Salmonella typhimurium DT 104 as an emerging and zoonotic pathogen
3	Develop PCR test for mycoplasma mastitis in milk samples
4	Assess Epidemiology of mycoplasma mastitis
5	Research support in dollars for the project on E. coli O157:H7

Report Date 11/10/2009 Page 71 of 146

Outcome #1

1. Outcome Target

Define natural occurance and shedding patterns of E. coli O157:H7

2. Outcome Type: Change in Condition Outcome Measure

2010 :1 **2011** :1 **2012** :1 **2013** :1 **2014** :1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 307 Animal Production Management Systems
- 308 Improved Animal Products (Before Harvest)
- 311 Animal Diseases
- 403 Waste Disposal, Recycling, and Reuse
- 711 Ensure Food Products Free of Harmful Chemicals, Including Residues from Agricultural and Other Sources.
- 712 Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins

Outcome #2

1. Outcome Target

Determine the extent of Salmonella typhimurium DT 104 as an emerging and zoonotic pathogen

2. Outcome Type: Change in Condition Outcome Measure

2010 :1 **2011** :1 **2012** :1 **2013** :1 **2014** :1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 307 Animal Production Management Systems
- 308 Improved Animal Products (Before Harvest)
- 311 Animal Diseases
- 403 Waste Disposal, Recycling, and Reuse
- 711 Ensure Food Products Free of Harmful Chemicals, Including Residues from Agricultural and Other Sources.
- 712 Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins
- 722 Zoonotic Diseases and Parasites Affecting Humans

Outcome #3

1. Outcome Target

Develop PCR test for mycoplasma mastitis in milk samples

2. Outcome Type : Change in Knowledge Outcome Measure

2010:1 **2011**:1 **2012**:1 **2013**:1 **2014**:1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

Report Date 11/10/2009 Page 72 of 146

- 307 Animal Production Management Systems
- 311 Animal Diseases
- 712 Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins

Outcome #4

1. Outcome Target

Assess Epidemiology of mycoplasma mastitis

2. Outcome Type: Change in Knowledge Outcome Measure

2010 ① **2011** : 1 **2012** : 1 **2013** : 1 **2014** : 1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 307 Animal Production Management Systems
- 311 Animal Diseases
- 712 Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins

Outcome #5

1. Outcome Target

Research support in dollars for the project on E. coli O157:H7

2. Outcome Type: Change in Knowledge Outcome Measure

2010 50000 **2011** : 50000 **2012** : 50000 **2013** 50000 **2014** : 50000

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 307 Animal Production Management Systems
- 308 Improved Animal Products (Before Harvest)
- 311 Animal Diseases
- 403 Waste Disposal, Recycling, and Reuse
- 711 Ensure Food Products Free of Harmful Chemicals, Including Residues from Agricultural and Other Sources.
- 712 Protect Food from Contamination by Pathogenic Microorganisms, Parasites, and Naturally Occurring Toxins

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Economy
- Competing Public priorities
- Appropriations changes
- Public Policy changes
- Government Regulations
- Competing Programmatic Challenges

Report Date 11/10/2009 Page 73 of 146

Description

The economy, appropriations changes, public policy changes, changes in government regulations, competing public priorities, and competing programmatic challenges, may all impact the AAHP research efforts. Currently the areas of Biosecurity (Knowledge Area 311- Animal Diseases), Environmental Stewardship (Knowledge Area 403- Waste Disposal, Recycling, and Reuse), and Food Safety (Knowledge Areas 711 and 712- Ensure food products free of harmful chemicals, including residues from agricultural and other sources; Protect food from contamination by pathogenic microorganisms, parasites, and naturally occurring toxins) are targeted areas of the ARS for research. It is assumed that the reason for the focus on these targeted areas is due to the concern by, and for the, public. Should those concerns change, then reduced funding would be available for research. This would have a significant effect on progress of the AAHP research accomplishments. However, it should be noted that the AAHP does not exclusively target the ,hot topics, and that several research areas of AAHP focus, although part of targeted programs of ARS research, are not areas for which funding is readily available. Historically the unit has been able to make significant progress in these research areas despite the fact that these have not been areas target for substantial funding. If history is a predictor of the future, then it can be said with confidence that the Program will continue to make research progress in all areas.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- Before-After (before and after program)
- During (during program)

Description

The program is reviewed both by individual investigator and by the program at annual review time. The program is also evaluated by both Colleges as part of their annual review process.

2. Data Collection Methods

- Journals
- Other (Grant dollars)

Description

Annually the numbers of publications, grant dollars, graduate students, invited presentations, and studies in progress will be tabulated and scored. Progress or the lack there of will be summarized.

Report Date 11/10/2009 Page 74 of 146

V(A). Planned Program (Summary)

Program #9

1. Name of the Planned Program

Program in Fruit and Vegetable Development, Production and Management

2. Brief summary about Planned Program

The research activities included in this program will focus on two general areas of need: 1) the development of fruit and vegetable crops that are particularly suited for production in the state of Washington and the Pacific Northwest, and 2) the creation of knowledge, tools, and techniques that can be applied to production and management of fruit and vegetable crops that will allow the growers of Washington to remain competitive in a global food economy. Specific research activities will include: 1) continuation of research that is directed at the development and release of fruit and vegetable varieties that will meet the needs of the Washington industries; 2) continuation of research that is dedicated to the development of an understanding of the genetic mechanisms that control factors related to fruit and vegetable production and quality and the isolation of genes that influence horticultural characteristics such as ripening, pest resistance, and storage potential; 3) continuation of research focusing on the investigation of the viability of alternative rootstocks for use in apple and cherry production in the Washington tree fruit industry; 4) development of an understanding of the physiological mechanisms involved in fruit damage resulting from extreme environmental conditions, and identification of environmental factors that affect production and quality in tree fruits and small fruits; 5) identification of mechanisms affecting utilization of calcium, and reproduction, growth, development, and physiology of fruits and vegetables; 6) investigation of production and management strategies that maximize efficiency and profits for Washington,s fruit and vegetable producers; and 7) development of automation, sensing, control, and information systems for precision agriculture.

3. Program existence : Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds: Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 75 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
201	Plant Genome, Genetics, and Genetic Mechanisms			8%	
202	Plant Genetic Resources and Biodiversity			10%	
203	Plant Biological Efficiency and Abiotic Stresses Affecting Plants			13%	
204	Plant Product Quality and Utility (Preharvest)			28%	
205	Plant Management Systems			23%	
206	Basic Plant Biology			7%	
212	Pathogens and Nematodes Affecting Plants			3%	
216	Integrated Pest Management Systems			1%	
404	Instrumentation and Control Systems			4%	
601	Economics of Agricultural Production and Farm Management			1%	
711	Ensure Food Products Free of Harmful Chemicals, Including Residues from Agricultural and Other Sources.			2%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Washington's fruit and vegetable industries play a very significant role in the state,s agricultural economy. Tree fruit and small fruit crops contribute nearly \$1.5 billion in farm gate value to the state,s economy and agriculture,s contribution is considerably more if the sectors involved in processing and marketing are included. Washington leads the nation in production of several crops. The state is ranked number one in the nation in the production of apples, pears, concord grapes, sweet cherries, and raspberries. About half of all apples, grapes, cherries, and pears, and 83% of all raspberries grown in the U.S. are produced in Washington. Competition from South American and Asian countries is beginning to seriously affect the tree fruit and small fruit industries of Washington. The Chinese apple industry has, for instance, already had a serious effect on the price of apples used for juice concentrate. It is imperative that Washington,s fruit growers have access to new crop varieties, and the most efficient production and management systems to remain competitive in this newly emerging global economy. Washington enjoys an extremely diverse vegetable industry that also makes significant contributions to the state,s economy. Washington vegetable

Report Date 11/10/2009 Page 76 of 146

growers produce asparagus, carrots, cucumbers, green peas, lettuce, onions, potatoes, and snap beans The state,s farmers also produce considerable vegetable seed. In some cases, such as asparagus and processed carrots, Washington leads the nation in the production of these crops. The Washington potato industry is a major economic industry, and is second only to Idaho in production. Washington potato growers produced over 9 billion pounds of potatoes in 2008 valued at nearly \$552 million (farm gate value). Nearly 90% of the Washington crop is processed into frozen potato products, which adds significantly to the value of the crop.

2. Scope of the Program

- In-State Research
- Integrated Research and Extension
- In-State Extension
- Multistate Integrated Research and Extension
- Multistate Extension
- Multistate Research

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

The over-riding assumption of this research program is that the fruit and vegetable industries of Washington will continue to dominate the state,s agricultural economy in the future, and that fruit and vegetable growers will face increasing challenges in competing in a global food economy. More than half (23) of the faculty in the department are engaged in research and extension activities related to this program, and it is assumed that this number will remain constant or perhaps increase in response to emerging industry needs. Newly created faculty positions in stone fruit and apple breeding were filled in 2008. The program is thus a very robust with contributions coming from well established senor scientists as well as younger faculty. There is no doubt that these scientists have a full knowledge of the literature and the accepted techniques and procedures used in the research. They have, in many cases, established themselves as national and international experts in their area of study, and have contributed much to the body of knowledge of the science. It is also assumed that several faculty who plan to retire in the next few years will be replaced, and newly appointed faculty will establish specific research programs that aim to benefit Washington, s fruit and vegetable industries. This does not necessarily mean that all existing programs will be continued, but that new programs will be created to address emerging needs and problems within the general context of fruit and vegetable production. The group of scientists contributing to this program receive funding from a great variety of sources: Federal competitive grants (NSF, NASA, USDA), Federal special appropriations (CSREES), several commodity commission and grower organization research support funds (e.g. Washington Tree Fruit Research Commission, Washington Potato Commission), the State of Washington, and many private organizations. It is assumed that this diversity as well as the overall amount of funding will continue or increase over the next ten years. These scientists more often than not work in a collaborative, integrated way to solve problems faced by industry. The work ranges from very molecular to very applied. It is assumed that these types of activities will continue, and most likely increase, as the expertise of current faculty is supplemented with new appointments.

2. Ultimate goal(s) of this Program

The ultimate goal of this program to discover, disseminate and apply knowledge which emphasizes sound environmental practices and sustainable and efficient production of fruit and vegetable crops.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Veer	Exte	nsion	Re	search
Year	1862	1890	1862	1890
2010	0.0	0.0	45.3	0.0
2011	0.0	0.0	45.3	0.0
2012	0.0	0.0	45.3	0.0
2013	0.0	0.0	45.3	0.0
2014	0.0	0.0	45.3	0.0

Report Date 11/10/2009 Page 77 of 146

V(F). Planned Program (Activity)

1. Activity for the Program

Specific activities and outputs vary across a wide range from molecular level inquiry to field based studies about the efficacy of horticultural production practices. These activities will include: basic research which focuses on the application of molecular biology, genetics and biochemistry, especially related to the calcium/calmodulin-mediated signal network that influences plant response to environmental factors; studies in fruit production and biology, with an emphasis on sustainability of fruit production systems; genomic, genetic, and breeding studies in apple, cherry, raspberry, and strawberry; studies of the anatomy and structure of grape berry during growth and development; research that emphasizes the use of plant bioregulators for apple, pear, and sweet cherry, studies related to the interaction of various environmental and production factors influencing yield and quality of potato tubers; research focusing on environmental factors and management practices as they influence grape physiology; studies of effects of deficit irrigation and partial root zone drying in apple, cherry, and grape; research which focuses on the development of an understanding of factors that cause skin disorders of apples; evaluation of potato cultivars for introduction into the Washington potato industry; studies focusing on practical mean of achieving balanced cropping and effects of new clonal rootstocks on scion productivity, growth, and fruit quality in cherry; research focusing on novel management strategies for high density cherry production, and the potential for mechanical harvest of fresh-market quality, stemless sweet cherries, and development of precision agriculture systems. The outputs of these activities will include: patents, plant variety releases, scientific journal articles, conference publications and presentations, poster presentations, field day presentations, web sites, and knowledge about production and management practices that is passed along to users in other informal settings.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension				
Direct Methods Indirect Methods				
 Workshop Other 2 (Conference Presentation) Other 1 (Research Reviews, Field days) Group Discussion 	Web sitesNewsletters			

3. Description of targeted audience

The audience for this program will be other scientists, economists, agribusiness, farmers, horticulturists and the tree fruit, small fruit, and potato industries.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	1250	600	0	0
2011	1250	600	0	0
2012	1250	600	0	0
2013	1250	600	0	0
2014	1250	600	0	0

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:1 **2011**:1 **2012**:1 **2013**:1 **2014**:1

Report Date 11/10/2009 Page 78 of 146

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	23	3	26
2011	24	4	28
2012	26	4	30
2013	28	4	32
2014	28	4	32

V(H). State Defined Outputs

1. Output Target

• Peer reviewed journal articles

2010 12	2011 12	2012 :14	2013 :16	2014 :18
Variety Releases				
2010 β	2011 3	2012 :3	2013 3	2014 ß
Plant Patents				
2010 :1	2011 1	2012 :1	2013:1	2014 :1
Number of graduate stud	ents supported by Agricultura	al Research Center and exter	nal funds	
2010 7	2011 9	2012 :9	2013 9	2014 :10

Report Date 11/10/2009 Page 79 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	See below under Evaluation.

Report Date 11/10/2009 Page 80 of 146

Outcome #1

1. Outcome Target

See below under Evaluation.

2. Outcome Type: Change in Condition Outcome Measure

2010 0 **2011** : 0 **2012** : 0 **2013** 0 **2014** : 0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 203 Plant Biological Efficiency and Abiotic Stresses Affecting Plants
- 204 Plant Product Quality and Utility (Preharvest)
- 205 Plant Management Systems
- 206 Basic Plant Biology

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Competing Public priorities
- Natural Disasters (drought, weather extremes, etc.)
- Government Regulations
- Competing Programmatic Challenges
- Populations changes (immigration,new cultural groupings,etc.)
- Appropriations changes
- Public Policy changes
- Economy

Description

There are many external factors that could affect the research programs mentioned here. None of these can be predicted at a level of precision that would suggest modifications of research protocols, and certainly none of them can be controlled at our level, although we are putting some emphasis on how of global warming might affect the mix of crops we grow. As noted above regardless of these external factors, it is assumed that the fruit and vegetable industry will continue to be a major contributor to the Washington agricultural economy. The programs described here will change in response to external factors as necessary but will strive to continue to be responsive to grower needs.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- During (during program)
- Before-After (before and after program)
- Retrospective (post program)

Description

A number of different measures will be used to evaluate the success of research projects described in this program at multiple points throughout the duration of the program. The short-term goal of creating new knowledge is evaluated by the extent to which this new knowledge is communicated throughout the scientific literature. The mid-term goal of communicating that knowledge to stakeholders will be evaluated based upon the success with which the information is disseminated through the use of presentations and posters given at grower sponsored conferences, workshops, and research reviews, and at university sponsored field days. The long-term goal of having direct impact on sound environmental practices and sustainable and efficient production in fruit and vegetable crops will be evaluated by the extent to which research findings are adopted throughout the

Report Date 11/10/2009 Page 81 of 146

industry. For those projects focusing on the investigation of production and management practices, (for example, research that emphasizes the use of plant bioregulators for apple, pear, and sweet cherry, studies related to the interaction of various environmental and production factors influencing yield and quality of potato tubers; research focusing on environmental factors and management practices as they influence grape physiology; studies of effects of deficit irrigation and partial root zone drying in apple, cherry, and grape), the extent to which recommended practices have been adopted will be used as the measure of success. In the case of research that focuses on the development of new products, such as sprays used to prevent sunburn in apple, or cracking in cherry, or the development of precision agriculture systems, the extent to which the new products or technologies are adopted for use throughout the industry will be used as a measure of success. For those projects which focus on fruit and vegetable breeding, the measure of success will be the extent to which newly released cultivars gain acceptance by growers, and begin to contribute to the agricultural economy. Most of the research projects included in this program are also funded by commodity commissions and other agricultural stakeholder organizations. Scientists present progress reports to these organizations on an annual basis as a part of the process for continuation of funding. The extent to which these projects receive continued financial support is another measure of their success.

2. Data Collection Methods

- Observation
- Journals
- Unstructured

Description

{NO DATA ENTERED}

Report Date 11/10/2009 Page 82 of 146

V(A). Planned Program (Summary)

Program #10

1. Name of the Planned Program

Program in the Post Harvest Quality of Fruits and Vegetables

2. Brief summary about Planned Program

The strength of Washington,s food-based horticultural industries is very dependent on effective and affordable post-harvest storage and processing of fruits and vegetables. The use of controlled atmosphere (CA) storage has made the Washington tree fruit industry the world-wide leader in its ability to extend markets to several months. Washington,s potato crop, valued at over \$550 million annually, is used chiefly for processing into frozen potato products. Due to post-harvest storage limitations and tuber quality, this processing is only about 60% efficient. The post-harvest research activities of the Department of Horticulture and Landscape Architecture are directed at increasing the efficiency of processing industries, improving storage capabilities of growers and processors, and enhancing the quality of fruit and vegetable crops for domestic and export markets.

3. Program existence : Mature (More then five years)

'4. Program duration : Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds : Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 83 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
201	Plant Genome, Genetics, and Genetic Mechanisms			10%	
202	Plant Genetic Resources and Biodiversity			10%	
203	Plant Biological Efficiency and Abiotic Stresses Affecting Plants			10%	
204	Plant Product Quality and Utility (Preharvest)			15%	
205	Plant Management Systems			10%	
206	Basic Plant Biology			10%	
501	New and Improved Food Processing Technologies			15%	
502	New and Improved Food Products			10%	
503	Quality Maintenance in Storing and Marketing Food Products			5%	
701	Nutrient Composition of Food			5%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Washington,s fruit and vegetable industries play a very significant role in the state,s agricultural economy. Tree fruit and small fruit crops contribute nearly \$1.5 billion in farm gate value to the state,s economy. After processing and marketing, the contribution is considerably more. In several crops, Washington leads the nation in production, ranking number one in the production of apples, pears, concord grapes, sweet cherries, and raspberries. About half of all apples, grapes, cherries, and pears, and 83% of all raspberries grown in the U.S. are produced in Washington. Competition from South American and Asian countries is beginning to seriously affect the tree fruit and small fruit industries of Washington. The Chinese apple industry has, for instance, already had a serious effect on the price of apples used for juice concentrate. It is imperative that Washington,s fruit growers have access to new crop varieties, and the most efficient production and management systems to remain competitive in this newly emerging global economy. Washington enjoys an extremely diverse vegetable industry that also makes significant contributions to the state,s economy. Washington vegetable growers produce asparagus, carrots, cucumbers, green peas, lettuce, onions, potatoes, and snap beans. The state,s farmers also produce considerable vegetable seed. In some cases, such as asparagus, and processed carrots, Washington leads the nation in the production of these crops. The Washington potato industry is a major economic contributor, and is second only to Idaho in production. Washington potato

Report Date 11/10/2009 Page 84 of 146

growers produced over 9 billion pounds of potatoes in 2008, with a farm gate value of more than \$552 million. Nearly 90% of the Washington crop is used in the production of frozen potato products and more than half of the crop is stored to provide a continuing supply to processors and the fresh market industry. This adds significantly to the value of the crop and underscores the importance of post-harvest handling and preservation.

2. Scope of the Program

- Multistate Extension
- In-State Extension
- Multistate Integrated Research and Extension
- In-State Research
- Multistate Research
- Integrated Research and Extension

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

The over-riding assumption of this research program is that the fruit and vegetable industries of Washington will continue to dominate the state,s agricultural economy in the future, and further that fruit and vegetable growers will face increasing challenges in competing in a global food economy. Several of the faculty in the department are engaged in research and extension activities related to this program and it is assumed that this number will remain constant or perhaps increase in response to emerging industry needs. It is assumed for instance that newly created positions in stone fruit and apple breeding will be successful. These new hires will contribute to the post harvest program. The post harvest program is a very robust and mature program with contributions coming from several well established senor scientists. There is no doubt that these scientists have a full knowledge of the literature and the accepted techniques and procedures used in the research. They have in fact, in many cases, established themselves as national and international experts in their area of study, and have contributed much to the body of knowledge of the science. The group of scientists contributing to this program receives funding from a great variety of sources: Federal competitive grants (NSF, NASA, USDA), Federal special appropriations (CSREES), several commodity commission and grower organization research funds (e.g. Washington Tree Fruit Research Commission, Washington Potato Commission), the State of Washington, and many private organizations. It is assumed that this diversity as well as the overall amount of funding will continue or increase over the next ten years. These scientists more often than not work in a collaborative, integrated way to solve problems faced by industry. There is considerable collaboration among scientists working in this Program Area, and scientists working in Program Area I described above. The work ranges from very molecular to very applied. It is assumed that these types of activities will continue, and most likely increase, as the expertise of current faculty is supplemented with new appointments.

2. Ultimate goal(s) of this Program

The ultimate goal of this program is to enhance quality of post harvest products from fruit and vegetable crops, and to identify new technologies that can be used in food storage and processing.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Year	Exte	nsion	Re	search
rear	1862	1890	1862	1890
2010	0.0	0.0	15.0	0.0
2011	0.0	0.0	15.0	0.0
2012	0.0	0.0	15.0	0.0
2013	0.0	0.0	15.0	0.0
2014	0.0	0.0	15.0	0.0

Report Date 11/10/2009 Page 85 of 146

V(F). Planned Program (Activity)

1. Activity for the Program

Specific activities and outputs vary across a wide range from molecular level inquiry to field and lab based studies related to post harvest handling, storage, and processing of horticultural crops. These activities will include: basic research which focuses on the application of molecular biology, genomics, genetics and biochemistry, related to the biological, chemical, and physiological mechanisms that explain post harvest phenomena in horticultural crops, studies directed at the identification of CA storage regimes for apples and other fruits, investigation of flavor chemistry in apples, studies of the post-harvest/processing quality component of potato clones in the Tri-State Variety trials, research to identify factors that affect potato processing quality, research directed toward the identification of strategies for storage of seed potatoes, research focused on the mechanical harvest and subsequent handling and storage requirements in asparagus, studies which address the use of microwave-vacuum drying technology for fruits and vegetables, studies which focus on lenticel breakdown and fruit finish in apples, and research which focuses on crop management factors that affect post harvest fruit and vegetable quality. The outputs of these activities will include: patents, plant variety releases, scientific journal articles, conference publications and presentations, poster presentations, field day presentations, web sites, and knowledge about production and management practices that is passed along to users in other informal settings.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension					
Direct Methods Indirect Methods					
 Workshop Other 1 (Research Reviews, Field days) One-on-One Intervention Group Discussion Other 2 (Conference Presentation) 	NewslettersWeb sites				

3. Description of targeted audience

The target audience will be scientists in the area of post harvest quality of fruits and vegetables, agribusiness, economists, and the participating vegetable and fruit industries (in particular the stone and pome fruit industries, and the potato industry).

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth	
Year	Target	Target	Target	Target	
2010	500	300	0	0	
2011	500	300	0	0	
2012	500	300	0	0	
2013	500	300	0	0	
2014	500	300	0	0	

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:1 **2011**:1 **2012**:1 **2013**:1 **2014**:1

3. Expected Peer Review Publications

Report Date 11/10/2009 Page 86 of 146

Year	Research Target	Extension Target	Total
2010	14	4	18
2011	15	4	19
2012	16	5	21
2013	18	6	24
2014	18	6	24

V(H). State Defined Outputs

1. Output Target

Peer reviewed journal articles

 2010:13
 2011:14
 2012:16
 2013:16
 2014:16

 • Graduate students supported on Agricultural Research Center and external funding

 2010:4
 2011:4
 2012:4
 2013:4
 2014:4

Report Date 11/10/2009 Page 87 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Please see written paragraph under evaluation.

Report Date 11/10/2009 Page 88 of 146

Outcome #1

1. Outcome Target

Please see written paragraph under evaluation.

2. Outcome Type: Change in Knowledge Outcome Measure

2010 0 **2011** : 0 **2012** : 0 **2013** 0 **2014** : 0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 203 Plant Biological Efficiency and Abiotic Stresses Affecting Plants
- 204 Plant Product Quality and Utility (Preharvest)
- 205 Plant Management Systems
- 206 Basic Plant Biology
- 501 New and Improved Food Processing Technologies

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Economy
- Competing Programmatic Challenges
- Public Policy changes
- Competing Public priorities
- Government Regulations
- Appropriations changes

Description

There are many external factors that could affect the research programs mentioned here. None of these can be predicted at a level of precision that would suggest modifications of research protocols, and certainly none of them can be controlled locally. As noted above, regardless of these external factors, it is assumed that the fruit and vegetable industry will continue to be a major contributor to Washington,s agricultural economy. The programs described here will change in response to external factors as necessary but will strive to continue to be responsive to grower needs.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- During (during program)
- Before-After (before and after program)

Description

A number of different measures will be used to evaluate the success of research projects described in this program at multiple points throughout the duration of the program. The short-term goal of creating new knowledge is evaluated by the extent to which this new knowledge is communicated throughout the scientific literature. The mid-term goal of communicating that knowledge to stakeholders will be evaluated based upon the success with which the information is disseminated through the use of presentations and posters given at grower sponsored conferences, workshops, and research reviews, and at university sponsored field days. The long-term goal to enhance quality of post harvest products in fruit and vegetable crops, and to identify new technologies that can be used in food storage and processing will be evaluated by the extent to which research findings are adopted throughout the industry. For those projects focusing on the investigation of improved storage practices, the extent to which recommended practices have been adopted by the food storage and processing industries will be used as the measure of success. In the case of research that focuses on the development of new products, such as material that is applied to potato

Report Date 11/10/2009 Page 89 of 146

tubers to suppress sprouting during storage, the extent to which the new products are adopted for use throughout the industry will be used as a measure of success. For those projects which focus on the selection of fruit and vegetable cultivars that have good potential for value added contributions, the measure of success will be the extent to which newly released cultivars gain acceptance by growers, and begin to contribute to the agricultural economy. Most of the research projects in this program are also funded by commodity commissions and other agricultural stakeholder organizations. Scientists make progress reports on an annual basis to these organizations as a part of the process of applying for continuation of funding. The extent to which these projects receive continued financial support is another measure of their success.

2. Data Collection Methods

- Unstructured
- Journals
- Observation
- On-Site

Description

{NO DATA ENTERED}

Report Date 11/10/2009 Page 90 of 146

V(A). Planned Program (Summary)

Program #11

1. Name of the Planned Program

Program in Environmental Horticulture

2. Brief summary about Planned Program

There is evidence that humans have manipulated their environments by the use of cultivated plants for thousands of years. In some cases, these plantings are intended to moderate extreme environmental conditions (e.g. temperature, humidity, and wind), while in other cases their purpose is primarily aesthetic. In contemporary times the use of plants to create aesthetically pleasing environments is commonplace. Nurserymen, landscape contractors, and urban foresters face many challenges in creating and managing urban landscapes. Compacted soil, physical human impact, air quality, and water availability are all factors that affect the survival of plants in this environment. Research included in this program area focuses on addressing these issues. The influence plants have on physiological human well-being has only been moderately understood. Recent research suggests that there may be more subtle physiological influences, as well as psychological benefits provided by plants. It has been found, for instance, that hospital patients recover more quickly from surgery when in rooms having plants, or with views of landscape plants. Clearly, additional research, like that which is described here, is needed to develop a more thorough understanding of the benefits of plants to human well-being.

3. Program existence : Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds: Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 91 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
124	Urban Forestry			10%	
134	Outdoor Recreation			10%	
203	Plant Biological Efficiency and Abiotic Stresses Affecting Plants			25%	
212	Pathogens and Nematodes Affecting Plants			25%	
724	Healthy Lifestyle			5%	
802	Human Development and Family Well-Being			10%	
804	Human Environmental Issues Concerning Apparel, Textiles, and Residential and Commercial Structures			10%	
903	Communication, Education, and Information Delivery			5%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

The landscape horticultural industry in the state of Washington is a strong and very important sector of the agricultural economy. It is estimated that plant products produced by this industry are worth \$250 million at the farm gate. It has further been estimated that the true contribution of the landscape horticulture industry to the state,s economy exceeds \$800 million. This is a situation that is not unique to Washington. It has recently been reported that landscape nursery plants constitute the highest valued agricultural commodity in Oregon. These numbers indicate the high value that society places on aesthetically pleasing landscapes. In addition to these obviously measurable economic characteristics, there are many other benefits of healthy landscapes. Sustainable quality of life in our built environments is, in fact, dependent on the very existence of healthy landscapes.

2. Scope of the Program

- Multistate Extension
- In-State Research
- In-State Extension
- Integrated Research and Extension
- Multistate Research

Report Date 11/10/2009 Page 92 of 146

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

There is little doubt that we will continue to be an urban dominated society, and questions of landscape management and plant/human interactions will require our attention. It is our assumption that society will continue to value plants in their built environments and this, in turn, will require research such as that described here. Further, we assume that there will be an increase in the need for this kind of research as populations expand and the demand for space to serve human needs increases. We assume that additional research capacity in urban horticulture and landscape architecture will be needed to adequately serve these needs. The scientists contributing to this program receive funding from a variety of sources: Federal competitive grants, the Washington State Department of Agriculture, several grower organizations, and many private organizations. It is assumed that this diversity as well as the overall amount of funding will continue or increase over the next ten years. These scientists, more often than not, work in a collaborative, integrated way to solve problems faced by the urban horticulture/landscape industry, and to answer more fundamental questions about plant and human interactions.

2. Ultimate goal(s) of this Program

The ultimate goal of this program to discover, disseminate and apply knowledge which emphasizes sound environmental practices in the landscape horticulture industries, and to develop an understanding of the physiological and psychological effects that plants have on people.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Vaan	Exte	nsion	Re	search
Year	1862	1890	1862 1890	
2010	0.0	0.0	3.3	0.0
2011	0.0	0.0	3.3	0.0
2012	0.0	0.0	3.3	0.0
2013	0.0	0.0	3.3	0.0
2014	0.0	0.0	3.3	0.0

V(F). Planned Program (Activity)

1. Activity for the Program

Specific activities that are part of this program include: investigations of the effects of cultural practices on plant root health and the establishment of landscape plants, research focusing on the development of an understanding or environmental and cultural factors that affect water stress and cold hardiness in landscape plants, research focusing on the identification of superior ornamental landscape plants for urban environments, studies of the influence of human experience in the development of perceptions related to urban landscapes, and research aimed at developing further understanding of the relationships between physical environments and human behavior. The outputs of these activities will include: plant variety releases, scientific journal articles, conference publications and presentations, poster presentations, field day presentations, web sites, and knowledge about production and management practices that is passed along to users in other informal settings.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension			
Direct Methods	Indirect Methods		
 Other 2 (Conference Presentation) Workshop Other 1 (Research Reviews, Field days) Group Discussion 	NewslettersWeb sites		

Report Date 11/10/2009 Page 93 of 146

3. Description of targeted audience

The target audience for this program consists of other scientists in the discipline, extension personnel, social scientists, landscape horticulture industry, and the consumer/gardener.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	600	100	0	0
2011	600	100	0	0
2012	600	100	0	0
2013	600	100	0	0
2014	600	100	0	0

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0 **2011**:0 **2012**:0

2013:0

2014:0

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	10	4	14
2011	10	5	15
2012	10	5	15
2013	10	6	16
2014	10	6	16

V(H). State Defined Outputs

1. Output Target

Peer reviewed journal articles

2010 .13 **2011** .13 **2012** .13 **2013** .13 **2014** .13

Report Date 11/10/2009 Page 94 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	See below under Evaluation.

Report Date 11/10/2009 Page 95 of 146

Outcome #1

1. Outcome Target

See below under Evaluation.

2. Outcome Type : Change in Knowledge Outcome Measure

2010 0 **2011** : 0 **2012** : 0 **2013** 0 **2014** : 0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 124 Urban Forestry
- 203 Plant Biological Efficiency and Abiotic Stresses Affecting Plants
- 724 Healthy Lifestyle

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Populations changes (immigration,new cultural groupings,etc.)
- Appropriations changes
- Government Regulations
- Public Policy changes
- Competing Public priorities
- Economy
- Competing Programmatic Challenges

Description

There are many external factors that could affect the research programs mentioned here. None of these can be predicted at a level of precision that would suggest modifications of research protocols, and certainly none of them can be controlled at our level. As noted above in section 5, regardless of these external factors, it is assumed that the environmental horticulture industry will continue to be a major contributor to Washington's agricultural economy. The programs described here will change in response to external factors as necessary but will strive to continue to be responsive to stakeholder needs.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- During (during program)
- Before-After (before and after program)

Description

This research program will be evaluated within the context of how well it serves the needs of the landscape horticulture industry, designers and planners, open space managers, and health care professionals. It will also be evaluated on how it has contributed to the body of knowledge related to the impact of plants on people. Evaluation criteria will be quantitative as well as qualitative. The short term goal to discover knowledge that emphasizes sound environmental practices in the landscape horticulture industries, and to develop an understanding of the physiological and psychological effects that plants have on people will be evaluated by the extent to which research results are disseminated in the scientific literature. Mid term goals will be evaluated based on the success with which the information is communicated in trade journals, conference proceedings, and popular periodicals that influence the behavior of members of the landscape horticulture community. The long term goals of the program will be evaluated based on: the acceptance by the landscape horticulture industry of newly developed strategies for plant establishment and production, the extent to which recommended design guidelines are implemented by open space and land management agencies, and the success of the research findings in influencing guidelines and recommendations developed for the use of plants to influence human health and well-being.

2. Data Collection Methods

Report Date 11/10/2009 Page 96 of 146

- Unstructured
- Journals
- Observation
- On-Site

Description

(NO DATA ENTERED)

Report Date 11/10/2009 Page 97 of 146

V(A). Planned Program (Summary)

Program #12

1. Name of the Planned Program

Program in Entomology

2. Brief summary about Planned Program

The Program in Entomology is focused on natural resources and the environment, protection of plant and crop resources (particularly through biological and integrated pest management), insect genomics, and food and environmental quality. The program is also involved in biological diversity studies, especially on native and threatened habitats, in an effort to provide data allowing for conservation of diversity through efficient land-use management strategies. Management of invasive weeds through phytophagous arthropods (a tactic beneficial to low input range management) will continue to be a primary undertaking. The James Entomological Collection, maintained by the department, will continue to be a historical as well as contemporary source of biological diversity information for studies on the insect fauna of native and agro-native interface habitats. The Department will develop and institute pest management strategies implementing best management practices lessening detrimental environmental and non target organism effects (including effects on human beings). These practices will primarily involve biological control and methods employing several integrated techniques including biorational and new-chemistry pesticides. Implementation of biological control strategies employing complex communities of natural enemies will be a primary focus. The department will continue the search for biocontrol organisms, as well as rear and release them. Additionally, we will study methods of habitat manipulation favoring biocontrol agents. Combined, these efforts will provide strategies benefiting and centering on commodities essential to the economic development of Washington and the Pacific Northwest; however, they will be applicable to a wide range of geographic locations and diverse agro ecosystems. Primary commodities of interest include tree fruits, small fruits, and dryland and irrigated crops including those with high value, specialty applications. Specific and general studies of insect genomics will center on honeybees and parasitic wasps. We will continue efforts to develop bees resistant to mites and disease, allowing for maximization of pollination activities as well as honey production. Entomology also is intimately involved in toxicological studies and the development of instruments to measure contaminants. These efforts provide potential means of minimizing contaminants and understanding their environmental and organismal fate. Interactions of those persons conducting toxicological assessments and those developing and implementing integrated pest management strategies provide for effective team and multidisciplinary cooperation in our efforts to better understand complex biological and physical processes.

3. Program existence : Mature (More then five years)
 4. Program duration : Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds: Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 98 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
121	Management of Range Resources			2%	
135	Aquatic and Terrestrial Wildlife			2%	
136	Conservation of Biological Diversity			6%	
211	Insects, Mites, and Other Arthropods Affecting Plants			20%	
215	Biological Control of Pests Affecting Plants			15%	
216	Integrated Pest Management Systems			35%	
304	Animal Genome			8%	
711	Ensure Food Products Free of Harmful Chemicals, Including Residues from Agricultural and Other Sources.			12%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Arthropod pests, especially insects, attack and eventually destroy approximately 20-30% of the food and fiber grown for human use. Insects, generally considered nuisances, can also vector serious plant and animal diseases and are among the most invasive of pests. Techniques used to manage insect pests may sometimes have measured or unforeseen non-target effects. On the other hand, insects are beneficial in their pollination activities and may be used as biological control organisms. They are valuable in natural and fundamental biological and environmental processes and may be studied as model organisms. Understanding the roles insects play in their myriad of contacts, especially when human interests are involved, is essential to their effective management and in the efficient use of beneficials. Management of pest species through more environmentally friendly and sustainable strategies is a primary focus of departmental research. Entomology is a leader in the development of integrated pest management techniques, especially those involving the judicious use of traditional pesticides, the testing of new pesticide chemistries that target physiological processes specific to insects, mating disruption techniques, and biological control. These methods provide for less environmental and non-target contamination often with a concurrent financial savings through a lessening of pesticide applications. We are centering many of our efforts on minor or regional commodities for which effective means of pest management have not been studied or achieved. These tactics allow for greater diversification of the agricultural base with more specialty crop and value-added opportunities. We have, through the resources of the James Entomological Collection, the opportunity to use arthropod biological diversity information, both historical and contemporary, in our efforts to better understand changes in habitat modification. This information will allow us to make wise land use decisions concerning subjects such as agricultural and environmental buffer zones, endangered and threatened species, damage potential of pestiferous invasive species, and the value and manipulation of habitat in order to enhance useful aspects of beneficial species. Pesticidal effects on the environment and non-target concerns also are major emphases of departmental research. Scientists of the Food and Environmental Quality Laboratory are developing and testing methods to monitor levels of contamination in agricultural and urban situations. Their methods may also be used to compare the effectiveness of various dispersal methods

Report Date 11/10/2009 Page 99 of 146

for pheromones employed in mating disruption pest management strategies. In separate efforts, toxicological studies undertaken by departmental personnel are leading to dramatic changes in the way the long-term effects of pesticides on the environment and non-target organisms are being evaluated. These studies benefit not only the agricultural sector, but also the general public, as we learn to recognize and mediate the potential detrimental effects of agricultural inputs.

2. Scope of the Program

- Multistate Integrated Research and Extension
- Multistate Research
- In-State Research
- Integrated Research and Extension

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

Providing the highest standards for environmental and human health while supplying effective pest management is critical to the financial future of the agricultural community and to the health of the human population. This goal can only be accomplished through research leading to innovative and novel means of managing pest arthropods, particularly insects. This goal has been a hallmark of entomological research at Washington State University and will continue through the current research programs led by personnel associated with the Department of Entomology. The objective of our research is not maintenance, but the development and implementation of new and innovative methods of pest management. At the same time, we will mediate and study these techniques as to their abilities to manage pests with increased sustainability and a lessening of known or potential environmental and health damaging aspects. This will be accomplished through methods such as biological control, mating disruption, the use of new pesticide chemistries, biorational techniques, and a more thorough integration of integrated pest management approaches. The need for a continued development and implementation of approaches as outlined above will not change. If funding and personnel levels remain constant or, hopefully, grow during the period of this plan of work, we will continue to have positive influences on the management of pest arthropods with minimal environmental and non-target effect. We are a Department of individuals that use multi-person and multi-disciplinary approaches to problem solving. When appropriate, we will use a team approach to provide long-term and sustainable solutions to complicated problems. We also possess the expertise to aid a variety of stakeholders having needs beyond simple pest management. Entomology at Washington State University explores basic principles of science in order to solve applied problems. We rely upon well-trained personnel with outstanding records of productivity and accomplishment, many of whom are recognized as leaders in their disciplines and have sound understandings of the fundamental science on which effective applied management strategies are built. We have strong expertise in insect pest management including traditional and newly developing strategies, insect systematics and biological diversity, toxicology, physiology, genomics, and ecology. It is our ability and willingness to work individually and as teams that will allow us to positively address current and future concerns.

2. Ultimate goal(s) of this Program

Our goal is to use applied and basic knowledge developed through departmental research activities to better manage pests and make more efficient use of beneficial arthropods, particularly insects. We intend to achieve less environmental and non-target contamination, allowing for the development of a healthier and more abundant food supply, and to increase the knowledge surrounding insects as model organisms.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Year	Exte	nsion	Re	search
rear	1862	1890	1862	1890
2010	0.0	0.0	56.6	0.0
2011	0.0	0.0	56.6	0.0
2012	0.0	0.0	56.6	0.0
2013	0.0	0.0	56.6	0.0
2014	0.0	0.0	56.6	0.0

Report Date 11/10/2009 Page 100 of 146

V(F). Planned Program (Activity)

1. Activity for the Program

Both basic and applied research will be conducted. Results of research efforts will be disseminated through refereed publications, general interest publications, Extension outlets, and presentations at scientific, stakeholder, and general public venues. A minimal amount of infrastructure will be constructed and equipment will be purchased during the plan of work period. All programs will involve the training of graduate students. Specific activities will include or produce a better understanding of biological diversity of native and disturbed habitats in Washington and the greater Pacific Northwest. Specimens collected and prepared during studies will be deposited in the James Entomological Collection. Studies of native and exotic species of arthropods in order to evaluate their potential for the control of and impact upon non-native, rangeland weed species. Studies directed at the management of direct and indirect pests through traditional technologies. Studies of basic biological and ecological principles as they relate to the management of pest and beneficial arthropods. Development and implementation of biological control and integrated pest management strategies for the management of pest arthropods, especially insects. Genomic studies of primarily honey bees and parasitic wasps to better enhance their beneficial potentials. The development and implementation of methods that measure and monitor agricultural chemicals in the environment. The development of methods that test the toxicological effects of agricultural chemicals on non-target organisms.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension			
Direct Methods Indirect Methods			
 Other 1 (Extension outlets) Other 2 (Meetings with Stakeholders) Workshop Group Discussion Education Class 	Web sitesOther 1 (Training of groups such as Maste)		

3. Description of targeted audience

Target audiences for our work in the Department of Entomology include scientists in various related disciplines, farmers, extension, agribusiness, public policy makers, legislators, government agencies, and the general public.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	5500	1500	1000	100
2011	5500	1500	1000	100
2012	5500	1500	1000	100
2013	6500	1500	1500	100
2014	6500	1500	1500	1500

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0 **2011**:0 **2012**:0 **2013**:0 **2014**:0

3. Expected Peer Review Publications

Report Date 11/10/2009 Page 101 of 146

Year	Research Target	Extension Target	Total
2010	33	20	53
2011	35	20	55
2012	35	20	55
2013	50	25	75
2014	50	25	75

V(H). State Defined Outputs

1. Output Target

2010 23

Peer reviewed journal articles

2011 25

2010 33 2011 35 2012 :35 2013 50 2014 50

• Graduate Students supported on Agricultural Research Center and other external funds

2012 :25

2013 28

2014 28

Report Date 11/10/2009 Page 102 of 146

V(I). State Defined Outcome

O. No	Outcome Name		
1	Percent of holdings that are implementing changes to IPM based on research findings		
2	2 Percent decrease in pesticide use		

Report Date 11/10/2009 Page 103 of 146

Outcome #1

1. Outcome Target

Percent of holdings that are implementing changes to IPM based on research findings

2. Outcome Type: Change in Action Outcome Measure

2010 70 **2011** : 75 **2012** : 75 **2013** 75 **2014** : 80

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 136 Conservation of Biological Diversity
- 211 Insects, Mites, and Other Arthropods Affecting Plants
- 215 Biological Control of Pests Affecting Plants
- 216 Integrated Pest Management Systems
- 304 Animal Genome
- 711 Ensure Food Products Free of Harmful Chemicals, Including Residues from Agricultural and Other Sources.

Outcome #2

1. Outcome Target

Percent decrease in pesticide use

2. Outcome Type: Change in Condition Outcome Measure

2010 :11 **2011** : 15 **2012** : 15 **2013** .15 **2014** : 20

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 136 Conservation of Biological Diversity
- 211 Insects, Mites, and Other Arthropods Affecting Plants
- 215 Biological Control of Pests Affecting Plants
- 216 Integrated Pest Management Systems
- 304 Animal Genome
- 711 Ensure Food Products Free of Harmful Chemicals, Including Residues from Agricultural and Other Sources.

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Appropriations changes
- Government Regulations
- Competing Programmatic Challenges
- Economy
- Public Policy changes
- Natural Disasters (drought, weather extremes, etc.)

Description

The research conducted by the Department of Entomology is governed by the expertise and problematic evaluations of the

Report Date 11/10/2009 Page 104 of 146

researchers as well as input from concerned stakeholders (including the public) and appropriate governmental agencies. Some of the work is proactive to foreseen or reactive to implemented governmental or industry imposed regulations. These are often initiated by public priorities. Resources are always a concern and have a direct affect on outcomes. Economic factors will affect the input of additional resources from the University, state and federal funding agencies, and stakeholders. Items such as technical support and equipment purchase often suffer during periods of economic exigency. We are hoping for added faculty positions during the period of work, which would allow for greater productivity and expansion of research subject area. We do not foresee the loss of any positions during this period but obviously, should they occur, they would lessen output.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- Before-After (before and after program)
- Retrospective (post program)
- During (during program)
- Time series (multiple points before and after program)

Description

Program evaluations take place on at least a yearly basis; they are primary topics during face-to-face annual reviews of faculty and programs. Most programs are also reviewed on a yearly or biannual basis by stakeholder concerns that often provide additional funding to a program. While each program is evaluated on an individual basis, criteria held in common to all programs include refereed publications in professional journals, professional proceedings, an evaluation of economic return, and, when applicable, the transfer of information to the public sector. Most of our departmental research is conducted by individuals with partial Extension appointments, or in close association with others in the Department or college that have Extension appointments. This is done in order to ensure the efficient transfer of findings to those that will implement changes based on the research. Before a program is initiated, a preliminary proposal is reviewed by at least two (preferably three) individuals with experience in the subject. Changes in proposed programs are made based on these reviews. As stated, program reviews take place on an annual basis. If, based on these annual reviews, changes need to be made or performance is not satisfactory, changes are made. In some cases, the program may be evaluated for specific advances based on a pre-program schedule. If certain milestones are not met, then the program may be modified. Each program is evaluated at termination.

2. Data Collection Methods

- Observation
- Journals
- On-Site

Description

{NO DATA ENTERED}

Report Date 11/10/2009 Page 105 of 146

V(A). Planned Program (Summary)

Program #13

1. Name of the Planned Program

Program in Natural Resource Sciences

2. Brief summary about Planned Program

Scientists in the Department of Natural Resource Sciences will work toward developing: (1) a better understanding of the ecology and restoration of native plants in annual grasslands of the Interior West, (2) a better understanding of the decline of various wildlife species, wildlife nutrition, and potential restoration techniques, and (3) superior management and restoration of lakes and streams in the western United States, with an emphasis on water quantity, quality and security. This ongoing research emphasis is expected to have a long-term duration.

3. Program existence: Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds: Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
112	Watershed Protection and Management			20%	
121	Management of Range Resources			10%	
123	Management and Sustainability of Forest Resources			15%	
135	Aquatic and Terrestrial Wildlife			40%	
136	Conservation of Biological Diversity			15%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Research conducted by the faculty members in the topic areas listed previously are of interest to a wide array of stakeholders. This is particularly true for work centered on: (1) Aquatic and Terrestrial Wildlife and (2) Watershed Protection and Management. In the first case, research efforts are strongly influenced by the need for local and national compliance with a wide array of federal mandated environmental laws, including the Endangered Species Act. In addition, the protection and restoration of the natural environment in which we live is of critical concern to a wide array environmental groups and the public in general. Similarly, watershed protection and management is of increasing interest in the western United States due to population growth throughout the region and its limited supply for obvious reasons.

Report Date 11/10/2009 Page 106 of 146

2. Scope of the Program

- In-State Extension
- Multistate Research
- Integrated Research and Extension

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

Major assumptions underlying this program of research include: (1) the continuation of current levels of faculty funding support, and (2) current levels of infrastructure support with the department and university. Faculty members are expected to generate extramural support for graduate assistantships, data collection, equipment needs, etc. Hence, downturns in the state and federal economy and associated research funding levels could adversely affect research productivity. It is expected that these results will result in improved resource management, more sustainable developed and undeveloped ecosystems, and sustainable development within the state and region.

2. Ultimate goal(s) of this Program

The ultimate goal of this program of research is improved insights into the management of developed and less-developed aquatic and terrestrial ecosystems.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Year	Extension		Research		
	1862	1890	1862	1890	
2010	0.0	0.0	6.0	0.0	
2011	0.0	0.0	6.0	0.0	
2012	0.0	0.0	6.0	0.0	
2013	0.0	0.0	6.0	0.0	
2014	0.0	0.0	7.0	0.0	

V(F). Planned Program (Activity)

1. Activity for the Program

In our research in the Department of Natural Resource Sciences we perform laboratory and field experiments. Data is collected and analyzed. Papers, books, book chapters and reports are written. Presentations are given in local, national and international venues. Graduate students and undergraduate students are mentored and trained. Curriculum is revised and developed.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension				
Direct Methods	Indirect Methods			
Education Class	Web sites			
 Demonstrations 	 Newsletters 			
One-on-One Intervention				
Group Discussion				
Workshop				

3. Description of targeted audience

Our target audience includes other researchers within and without the discipline of natural resource sciences including extension educators, persons in industry, economics, policy makers and the general public.

Report Date 11/10/2009 Page 107 of 146

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults Indirect Contacts Adults		Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	0	100	0	0
2011	0	100	0	0
2012	0	100	0	0
2013	0	100	0	0
2014	0	100	0	0

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0

2011:0

2012:0

2013:0

2014:0

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	10	0	0
2011	11	0	0
2012	12	0	0
2013	13	0	0
2014	14	0	0

V(H). State Defined Outputs

1. Output Target

Peer Reviewed Publications

2010:11

2011 12

2012:13

2013:14

2014 :15

• Graduate students supported on experiment station and grant funds

2010:15

2011 15

2012 :15

2013:15

2014 :15

Report Date 11/10/2009 Page 108 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	graduate students and post-docs trained
2	Percent increase in research support
3	New personnel in research positions

Report Date 11/10/2009 Page 109 of 146

Outcome #1

1. Outcome Target

graduate students and post-docs trained

2. Outcome Type: Change in Action Outcome Measure

2010 5 **2011** : 5 **2012** : 5 **2013** 5 **2014** : 5

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 112 Watershed Protection and Management
- 121 Management of Range Resources
- 123 Management and Sustainability of Forest Resources
- 135 Aquatic and Terrestrial Wildlife
- 136 Conservation of Biological Diversity

Outcome #2

1. Outcome Target

Percent increase in research support

2. Outcome Type: Change in Action Outcome Measure

2010 :10 **2011** : 10 **2012** : 10 **2013** :10 **2014** : 10

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 112 Watershed Protection and Management
- 121 Management of Range Resources
- 123 Management and Sustainability of Forest Resources
- 135 Aquatic and Terrestrial Wildlife
- 136 Conservation of Biological Diversity

Outcome #3

1. Outcome Target

New personnel in research positions

2. Outcome Type: Change in Condition Outcome Measure

2010 0 **2011** : 0 **2012** : 0 **2013** : 1 **2014** : 1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 112 Watershed Protection and Management
- 135 Aquatic and Terrestrial Wildlife
- 136 Conservation of Biological Diversity

Report Date 11/10/2009 Page 110 of 146

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Economy
- Appropriations changes
- Government Regulations
- Public Policy changes

Description

This program of research resides in a university environment with very limited institutional research support. Faculty members are responsible for raising virtually all needed research funds from extramural sources. Faculty are provided with an office, laboratory and related space within which to conduct their research. The unit does not have any state/federally supported research assistants and very limited funding for teaching assistants. Faculty members are not provided with any base level research funding. As a result, they are expected to obtain extramural funding to support all aspects of their research including equipment, research assistants, travel, supplies, etc. In summary, faculty members are viewed as the entrepreneurial research engines underlying the research program and in the mentoring of graduate students.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

Other (See below)

Description

Each faculty member with a Hatch project included in this group are reviewed annually, first by the Department Chair and subsequently by the Dean and Directors of the College of Agricultural, Human and Natural Resource Sciences. Target Measures used include: (1) Number of refereed journal articles produced, (2) Quality of refereed journal articles produced, (3) Amount of extramural funding received from other sources in support of these research efforts and (4) the number of masters and doctoral students completing their degrees. Over the longer term, the chair considers the impact of the research on resource management decisions. Unfortunately, these evaluations typically occur several years after the completion of the research.

2. Data Collection Methods

- Other (See below)
- Whole population
- Sampling

Description

Captive Animal trials

Report Date 11/10/2009 Page 111 of 146

V(A). Planned Program (Summary)

Program #14

1. Name of the Planned Program

Wood Materials Engineering Laboratory

2. Brief summary about Planned Program

The heavy reliance on finite petroleum resources for energy and chemical/material feedstocks has created serious problems and concerns in our national security, economy, and the environment. Sustainability of our nations economy needs the utilization of renewable resources for energy and materials. Investment and innovation in bioproduct research is absolutely necessary in order to end our reliance on foreign oil, address larger scale environmental issues such as global warming, and create new opportunities for our agricultural industries. Biobased polyesters produced from agricultural feedstocks, poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), are increasingly important. There exists a large gap between the reality in commercial applications of biobased polyesters and the promise from research results due to both technical and economic barriers. The production costs of biobased polymers have been reduced greatly and are now competitive with some fossil oil-based plastics such as PET and polystyrene, but are still more expensive than polyethylene, polypropylene, etc. Nevertheless, biobased polyesters become very attractive if the factors of using renewable resources and the benefits to the environment are considered. As emerging resins, biobased polyesters still have some technical issues to be addressed before they can replace the current fossil oil-based resins in broad applications. As one of the solutions, this program offers to investigate the manufacturing of microcellular foam of natural fiber reinforced biopolyesters (biocomposites). The proposed research aims to develop a new technology of bioproducts with cost effectiveness, energy efficiency and performance enhancement. The research approach draws upon interdisciplinary skills. The findings from this research will advance the knowledge of bioproducts and potentially result in new commercial applications of biobased polyesters.

3. Program existence : Intermediate (One to five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds : Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
511	New and Improved Non-Food Products and Processes			100%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Producing materials from renewable resources is not only an option but a mandate for the near future. Bioplastics are making inroads into the marketplace. Both PLA and PHAs are thermoplastic biobased polyesters derived from starch feedstock, and are the major thermoplastic biopolymers that can currently be produced in large industrial scale. PLA and PHAs demonstrate high tensile strength and modulus comparable to many fossil oil based plastics, for example, polypropylene. Niche applications of biobased polyesters, such as utensils, food packaging, grocery bags, and mulch films, are emerging. However, bioplastics have only an insignificant share in the current marketplace dominated by fossil oil based plastics. While the effort is continuously made to reduce resin costs, developing and manufacturing cost effective and performance enhanced products become critical to the promotion of bioproduct applications in the conventional plastics marketplace, and contribute to the transition of our economy to one built on sustainable and renewable materials and energy resources rather than on fossil oil. In general, the major obstacles for biobased polyester plastics include: a narrow processing window, easy thermal degradation, low melt strength. Performance is inhibited by post process embrittlement, low impact strength and low heat distortion temperature. The

Report Date 11/10/2009 Page 112 of 146

production cost is relatively more expensive than mainstream plastics (polyethylene and polypropylene). In this project, we will investigate fully biodegradable microcellular foams of biobased polyester/natural fiber composites with balanced design of the properties. A ternary composite system, composed of natural fiber and biobased polyester as the major component, and poly(butylene adipate-co-terephthalate) as a toughener, will be investigated. The material saved from foamed products and the use of low-cost reinforcing natural fibers contribute to cost reduction. Microcellular foam demonstrates overall superior mechanical properties to conventional foams, and presents one of the most promising new materials. Impact strength, tensile toughness and fatigue life of MCP are found higher than that of solid plastics when the relative foam density is above a specific level. The microcellular foaming process is also environmentally friendly because it uses CO2 or N2 as blowing agents for foaming.

2. Scope of the Program

In-State Research

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

Developing the technology of microcellular biocomposites requires profound knowledge and expertise in interfacial adhesion, toughening mechanisms, fracture mechanics, preparation of multicomponent polymeric materials, and microcellular foaming technology. This study could result in great opportunities for biocomposite foams to replace polystyrene and polyethylene foams, which are commonly used for packaging and building materials. The proposed research concepts include: (1) preparing natural fiber reinforced biopolyester composites (biocomposites), (2) preparing microcellular foam using the biocomposites, (3) developing an environmentally benign foaming process. Hurdles to be overcome by the proposed plan are: (1) low impact strength/toughness and embrittlement, (2) low heat distortion temperature (for PLA), (3) a narrow processing window, and (4) production cost barriers. The economic benefits will be an economical resin and energy saving resulting from weight reduction which will render biocomposites competitive to those petrochemical foamed products. The environmental benefits will be products which are mostly composed of renewable materials and completely biodegradable which can be composted. The manufacturing process will be environmentally benign.

2. Ultimate goal(s) of this Program

New technology of microcellular foam of biopolyester composites will be developed, promoting broad applications of biobased polyesters to replace conventional petrochemical plastics.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Vaar	Exte	nsion	Re	search
Year	1862	1890	1862	1890
2010	0.0	0.0	0.5	0.0
2011	0.0	0.0	0.5	0.0
2012	0.0	0.0	0.5	0.0
2013	0.0	0.0	0.5	0.0
2014	0.0	0.0	0.5	0.0

V(F). Planned Program (Activity)

1. Activity for the Program

1). Characterize composite composition-morphology-properties relationships 2). Optimize microcellular foam extrusion design and processing 3). Define morphology and mechanical and physical properties of microcellular foams 4). Develop applications

Report Date 11/10/2009 Page 113 of 146

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension			
Direct Methods Indirect Methods			
 Education Class Demonstrations Other 2 (dissemination of research result) Other 1 (conduct research) One-on-One Intervention Group Discussion 	Other 1 (Research Publications)Web sites		

3. Description of targeted audience

The target audience for this program will be the forest products industry, composite industry and packaging materials industry.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	150	3000	2	0
2011	150	3000	2	0
2012	150	3000	2	0
2013	150	3000	2	2
2014	150	3000	2	2

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0

2011:0

2012:1

2013:0

2014:0

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	3	0	3
2011	4	0	4
2012	4	0	4
2013	4	0	4
2014	4	0	4

V(H). State Defined Outputs

1. Output Target

Peer Reviewed journal Articles

2010 3 2011 4 2012 4 2013 4 2014 4

Report Date 11/10/2009 Page 114 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Methods to improve the compatibility of natural fiber and biopolyesters and melt strength of biocomposities,
	knowledge of composition-morphology-property relationships of composites
2	Microcellular foaming extrusion process design and processing optimization of biocomposites;
	characterization of composition-morphology-property relationships of microcellular foam
3	Product application development of microcellular foaming technology of biocomposites

Report Date 11/10/2009 Page 115 of 146

Outcome #1

1. Outcome Target

Methods to improve the compatibility of natural fiber and biopolyesters and melt strength of biocomposities, knowledge of composition-morphology-property relationships of composites

2. Outcome Type: Change in Knowledge Outcome Measure

2010 0 **2011** : 0 **2012** : 1 **2013** 0 **2014** : 1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 511 - New and Improved Non-Food Products and Processes

Outcome #2

1. Outcome Target

Microcellular foaming extrusion process design and processing optimization of biocomposites; characterization of composition-morphology-property relationships of microcellular foam

2. Outcome Type: Change in Action Outcome Measure

2010 0 **2011** : 0 **2012** : 0 **2013** 0 **2014** : 0

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 511 - New and Improved Non-Food Products and Processes

Outcome #3

1. Outcome Target

Product application development of microcellular foaming technology of biocomposites

2. Outcome Type : Change in Condition Outcome Measure

2010:1 **2011**:1 **2012**:1 **2013** 0 **2014**:1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 511 - New and Improved Non-Food Products and Processes

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Government Regulations
- Public Policy changes

Description

Cellulose and starch are the two most abundant plant polymers extensively available in the United States. Utilization of these polymers or their derivatives for materials results in direct energy saving and environmental benefit. Favorable governmental regulations, such as the federal procurement of biobased products, boost the research and development interest from both academic institutions and industry. This project addresses the research need in the national biomass technologies roadmap for the development of alternatives to petroleum-based chemicals, polymers, plastics, and synthetic fibers. According to this roadmap, production of chemicals and materials from biomass will need to increase from 5% of the production of target US

Report Date 11/10/2009 Page 116 of 146

chemical commodities in 2001, to 18% in 2020, and to 25% in 2030. The proposed research is directly responsive to one National Research Initiative priority in Biobased Products and Bioenergy Production Research, which calls for innovative non-food uses of biomass for the sustainable production of industrial products. This project is also aligned with the current NRI and USDA strategic planning in enhancing economic opportunities for agricultural producers and protecting the nation's environment.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- Before-After (before and after program)
- During (during program)

Description

A coordinating committee will be created including the PI, the lab director, and a senior faculty member. The committee will meet semi-annually to review the progress, discuss the problems, and recommend solutions. The committee members will also assist in exposing the research activities to education and professional societies.

2. Data Collection Methods

• Other (See below)

Description

Lab Research

Report Date 11/10/2009 Page 117 of 146

V(A). Planned Program (Summary)

Program #15

1. Name of the Planned Program

Program in Biological Systems Engineering

2. Brief summary about Planned Program

The Department of Biological Systems Engineering will conduct research in three established main areas: (1) land, air, water resources, and environmental engineering, (2) food engineering, and (3) biofuels and bioproducts engineering, and a new emerging area (4) Agricultural Automation. It is the goal of the department to develop strong and well-funded research programs that can provide a solid foundation to a nationally-competitive graduate education program. For this purpose, we are conducting a targeted hiring process aimed at attracting talented young faculty members to support our vision for the future.

3. Program existence : Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds: Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 118 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
102	Soil, Plant, Water, Nutrient Relationships			5%	
111	Conservation and Efficient Use of Water			5%	
112	Watershed Protection and Management			5%	
133	Pollution Prevention and Mitigation			5%	
205	Plant Management Systems			10%	
402	Engineering Systems and Equipment			10%	
403	Waste Disposal, Recycling, and Reuse			15%	
404	Instrumentation and Control Systems			5%	
501	New and Improved Food Processing Technologies			15%	
502	New and Improved Food Products			5%	
503	Quality Maintenance in Storing and Marketing Food Products			5%	
511	New and Improved Non-Food Products and Processes			15%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Agriculture in the State of Washington is extremely diversified, with multiple irrigated and rainfed crops and commodities. A significant fraction of the output is traded in the global market. Rainfall amounts fluctuate from 180 to over 1200 mm per year on average across state locations, with a significant fraction of the agricultural output produced under a Mediterranean type of climate that further enhances diversity. The location of the state, open to the Pacific Rim, increases the opportunities for trade with emerging Asian economies. Factors associated with increasing oil prices, global competition, climate change, and competing pressure for soil and water resources from other sectors of the economy are strong drivers of research needs in the

Report Date 11/10/2009 Page 119 of 146

state. Our research focus on environmental conservation and value-added agriculture through engineering is critical for the future of the state, including the development of automated systems for specialty crops production and handling. Research opportunities for food processing technologies that utilize less energy while producing innovative products will capitalize on the state agricultural diversity to develop healthy and appealing new products. More efficient technologies for biofuel production will complement the fossil oil production system of the state while developing new bioproducts offering new income opportunities for growers and foresters. More efficient production of other products (industrial chemicals, pharmaceuticals) from what is now biological waste material will provide less expensive products while enhancing incomes in agriculture and forestry. Land, air, and water conservation practices under scenarios of climate change and energy shortages are critical for the future of the state. All areas of departmental research are high on the list of priorities from the Governor's Office and the State Legislature.

2. Scope of the Program

- Multistate Research
- In-State Research

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

We are currently in the process of realigning our research capabilities with emerging state and national needs, including hiring new research personnel. It is our assumption that the current faculty size of eleven will grow to thirteen or fourteen faculty members during the period of this plan of work. This year, the faculty size will reach twelve members. We are making efforts to concentrate human resources in basic research that can easily connect with applied research and needs via multidisciplinary teams. It is our expectation that the current level of annual extramural support expenditures (around \$3.0 M per year) will be sustained or increased to support a graduate program of about fifty graduate students, mostly PhDs, and about twenty postdoctoral research associates. We assume that certain social and economic trends will continue in the short, medium, and long term. It seems safe to assume continuing attention paid to the environment with developing or maintaining a clean, sustainable environment important to Americans both socially and economically. We further assume that Americans will continue to want food that is safe and nutritious with natural flavors, yet easy to prepare and to store. Agriculture and forestry producers, we believe, will continue to have low profit margins that mean it is important to provide additional income to them with new products that they can sell in strong markets. Researchers in this department will be able to enhance their effectiveness by collaborating with their colleagues both in the department and elsewhere, as they do now. We see the continuing need for multidisciplinary teams to solve research problems and faculty members in this department leading or forming such teams or serving as active members. We are adding faculty members in the department based on our needs and on the needs of the university and of the state in the assumption that the new skills brought to us will be important in solving crucial research problems we are not dealing with today.

2. Ultimate goal(s) of this Program

New technologies created by this program will result in (1) soil and water conservation practices that are cost effective and suitable for adoption by growers and other resource managers, (2) food processing technologies that reduce energy consumption while providing nutritional food products that take advantage of the diverse agricultural output of the state, (3) new non food products from agricultural crops and efficient conversion of biomass to energy, and (4) innovative systems for agricultural automation.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Voor	Exte	nsion	Re	search
rear	Year 1862		1862	1890
2010	0.0	0.0	37.9	0.0
2011	0.0	0.0	37.9	0.0
2012	0.0	0.0	37.9	0.0
2013	0.0	0.0	37.9	0.0
2014	0.0	0.0	37.9	0.0

Report Date 11/10/2009 Page 120 of 146

V(F). Planned Program (Activity)

1. Activity for the Program

We plan to support a vigorous graduate research program crucial to the development of high quality research in our focal areas of interest. We will develop and evaluate innovative water/soil management practices that mitigate the effects of uncertain water resources (both precipitation and irrigation) and other factors associated with climate change and atmospheric CO2 elevation. We will develop a roadmap for bioproducts and bioenergy technology that is specific to the region's energy needs and to the crops/biomass grown in the region. We will develop food processing technologies that provide nutritious new products, increase the safety of existing products, and help improve the overall health of the population. We will develop automated systems and sensors to facilitate mechanized operations for specialty crops.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension			
Direct Methods	Indirect Methods		
WorkshopOther 1 (Seminars)One-on-One Intervention	Web sitesNewslettersOther 1 (Popular press articles)		

3. Description of targeted audience

The target audience is the scientific community in biological systems engineering, general agriculture, agribusiness, extension personnel, growers in the region, state, national and non-governmental agencies.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults Direct Contacts Youth		Indirect Contacts Youth	
Year	Target	Target	Target	Target	
2010	100	240	40	80	
2011	110	260	45	90	
2012	120	280	50	100	
2013	130	290	55	110	
2014	140	300	60	120	

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:1 **2011**:1 **2012**:1 **2013**:1 **2014**:0

3. Expected Peer Review Publications

Report Date 11/10/2009 Page 121 of 146

Year	Research Target	Extension Target	Total
2010	50	0	50
2011	50	0	50
2012	50	0	50
2013	55	0	55
2014	60	0	60

$V(\mbox{\sc H}).$ State Defined Outputs

1. Output Target

Peer Reviewed Journal Articles

2010 50	2011 50	2012 :50	2013 55	2014 60
 Graduate Student 	s supported on Agricultural F	Research Center and grant fu	nds	
2010 24	2011 26	2012 :26	2013 28	2014 30

Report Date 11/10/2009 Page 122 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Conduct laboratory bench research on processing technologies for agricultural feedstocks to produce new
	products, and new energy sources.
2	Conduct pilot scale research on processing agricultural feedstocks to produce new products or energy
	sources.
3	A processing concept to produce new products or energy sources from agricultural commodities is
	available for transfer.
4	Food processing Technology concept tested at the laboratory and pilot scale.
5	Development or application of computer models to analyze agricultural systems.
6	Initiate Research Activities in Agricultural Automation

Report Date 11/10/2009 Page 123 of 146

Outcome #1

1. Outcome Target

Conduct laboratory bench research on processing technologies for agricultural feedstocks to produce new products, and new energy sources.

2. Outcome Type :

Change in Knowledge Outcome Measure

2010 2

2011:3

2012:3

2013 3

2014:3

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 402 Engineering Systems and Equipment
- 403 Waste Disposal, Recycling, and Reuse
- 501 New and Improved Food Processing Technologies

Outcome #2

1. Outcome Target

Conduct pilot scale research on processing agricultural feedstocks to produce new products or energy sources.

2. Outcome Type:

Change in Knowledge Outcome Measure

2010 2

2011:2

2012:2

2013 2

2014:2

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 402 Engineering Systems and Equipment
- 403 Waste Disposal, Recycling, and Reuse
- 501 New and Improved Food Processing Technologies

Outcome #3

1. Outcome Target

A processing concept to produce new products or energy sources from agricultural commodities is available for transfer.

2. Outcome Type:

Change in Condition Outcome Measure

2010 £0

2011:1

2012:1

2013 :1

2014:1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 403 Waste Disposal, Recycling, and Reuse
- 501 New and Improved Food Processing Technologies

Outcome #4

1. Outcome Target

Food processing Technology concept tested at the laboratory and pilot scale.

Report Date 11/10/2009 Page 124 of 146

2. Outcome Type: Change in Condition Outcome Measure

2010 :1 2011 :1 2012 :1 2013 :1 2014 :1

- 3. Associated Institute Type(s)
 - •1862 Research
- 4. Associated Knowledge Area(s)
 - 501 New and Improved Food Processing Technologies
 - 502 New and Improved Food Products

Outcome #5

1. Outcome Target

Development or application of computer models to analyze agricultural systems.

2. Outcome Type: Change in Condition Outcome Measure

2010 2 **2011** : 2 **2012** : 2 **2013** 2 **2014** : 2

- 3. Associated Institute Type(s)
 - •1862 Research
- 4. Associated Knowledge Area(s)
 - 133 Pollution Prevention and Mitigation
 - 205 Plant Management Systems
 - 403 Waste Disposal, Recycling, and Reuse

Outcome #6

1. Outcome Target

Initiate Research Activities in Agricultural Automation

2. Outcome Type: Change in Action Outcome Measure

2010 :1 **2011** :1 **2012** :1 **2013** :1 **2014** :1

- 3. Associated Institute Type(s)
 - •1862 Research
- 4. Associated Knowledge Area(s)
 - 205 Plant Management Systems
 - 402 Engineering Systems and Equipment
 - 404 Instrumentation and Control Systems

V(J). Planned Program (External Factors)

- 1. External Factors which may affect Outcomes
 - Other (Changes in Market)
 - Appropriations changes
 - Competing Programmatic Challenges
 - Public Policy changes
 - Competing Public priorities
 - Economy

Report Date 11/10/2009 Page 125 of 146

Description

The main factors potentially affecting the outcomes of the program are: a) our ability to attract highly qualified faculty members, support personnel, postdoctoral associates, and graduate students, b) our ability to obtain sufficient extramural support to fully fund our planned research, and c) a positive state and university budgetary situation allowing us to compete for resources to enhance our research position (infrastructure, equipment, seed funds, etc.). Lower funding levels for the university and the Agricultural Research Center will prevent us from hiring new faculty members as planned and might even reduce the size of the department to the point where we would have difficulty sustaining research efforts. Lower funding levels from granting agencies might prevent us from having the extramural money necessary to proceed with research even when all faculty members are aggressively pursuing opportunities to secure money for their research. Public policy changes and changes in markets for new food products or for new biologically based products are two factors that could adversely affect us, but such change seems improbable. Attention to environmental issues hardly seems likely to wane. Likewise, the current attempt to pursue alternatives to petroleum based products, as fuel, chemicals, or pharmaceuticals, appears to be a trend that will continue for the life of this plan. Americans seem highly likely to continue preferring convenience foods that are safe and nutritious and that have an attractive taste; this trend might even accelerate based on overseas demand. We believe, in short, that these two factors will be in our favor in the next five years, but one or both could change.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- Other (See below)
- Comparisons between different groups of individuals or program participants experiencing different levels of program intensity.
- After Only (post program)
- Retrospective (post program)

Description

Comparisons with other similar departments across the country.

2. Data Collection Methods

- Journals
- Other (See below)

Description

A quantitative and qualitative survey regarding annual activities is conducted each year. Achievements for the year are compiled and compared with benchmark targets. These are from faculty reports of activity.

Report Date 11/10/2009 Page 126 of 146

V(A). Planned Program (Summary)

Program #16

1. Name of the Planned Program

Institute of Biological Chemistry

2. Brief summary about Planned Program

The Institute of Biological Chemistry's mission is to conduct relevant and groundbreaking research in the plant sciences, with the overall goal to both understand how plants work and how they can be most effectively utilized for the good of humanity and the environment. Topic areas include: helping decipher the plant genome (as well as of bacterial systems involved in nitrogen fixation); determining how specific plant biochemical pathways can be modified to improve wood and fiber quality, and to provide modified plants more suitable for bioenergy/biofuel products; establishing how the efficiency of photosynthesis can be improved and thus to increase plant productivity; identifying how plants can optimally form various nutritional components (e.g. edible carbohydrates and proteins), as well as numerous specialty plant products (oils, flavors, fragrances, dietary supplements, cancer preventative substances), as well as how plants defend themselves against opportunistic pathogens. The Institute of Biological Chemistry continues to expand its presence in these areas as a truly internationally recognized program. A rapidly emerging emphasis, which will be a new focus, is to increase our knowledge of how the various plant enzymes and proteins confer their biological functions via structural biology studies.

3. Program existence : Mature (More then five years)

'4. Program duration : Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds : Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

Report Date 11/10/2009 Page 127 of 146

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
201	Plant Genome, Genetics, and Genetic Mechanisms			15%	
202	Plant Genetic Resources and Biodiversity			5%	
203	Plant Biological Efficiency and Abiotic Stresses Affecting Plants			28%	
204	Plant Product Quality and Utility (Preharvest)			2%	
205	Plant Management Systems			4%	
206	Basic Plant Biology			28%	
211	Insects, Mites, and Other Arthropods Affecting Plants			8%	
511	New and Improved Non-Food Products and Processes			5%	
701	Nutrient Composition of Food			5%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

With the recent advances made in sequencing plant genomes of both scientific and industrial (agricultural and forestry) significance, much now remains to be established as to how plants make their individual components and well-defined plant architectural structures. The Institute faculty are committed to defining and delineating many of the complex biochemical processes found in plants, and to place a high premium on gaining not only new knowledge but in the training of the next generation of university scholars, researchers and educators.

2. Scope of the Program

- Multistate Research
- In-State Research

$V(\mbox{D}).$ Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

We are in the process of restructuring the Institute's capabilities, and plan to add several new faculty programs in the next 5-6 years. The faculty cadre presently within the Institute are keenly aware of the remarkable opportunities that lie ahead, such as the need to develop new plant products that enhance fiber/wood quality, or for bioenergy/biofuel applications. Other applications are to increase crop productivity, as well as improving the nutritional/health-protecting capacity of various plant species, together

Report Date 11/10/2009 Page 128 of 146

with the ability to improve resistance to opportunistic pathogens. Currently, the Institute covers several of the main areas in plant metabolism, but will need to expand the overall scientific areas of study (e.g. to include more extensive bioinformatics, proteomics, etc., capabilities). It is an expectation that within the next 5-6 years the research programs will attract \$5.5 million annually in extramural funds.

2. Ultimate goal(s) of this Program

The expectation of the Institute of Biological Chemistry is for each faculty member to have an internationally (i.e. truly world class) research program, which is of benefit to humanity (i.e. in terms of science, plant utilization and in education outreach). This largely involves dissemination of scientific discoveries and training of the next generation of plant scientists.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Year	Extension		Research		
	1862	1890	1862	1890	
2010	0.0	0.0	63.0	0.0	
2011	0.0	0.0	63.0	0.0	
2012	0.0	0.0	63.0	0.0	
2013	0.0	0.0	63.0	0.0	
2014	0.0	0.0	63.0	0.0	

V(F). Planned Program (Activity)

1. Activity for the Program

The Institute of Biological Chemistry has a very vigorous graduate research and training program. This leads to the graduation and placement of its highly trained (Ph.D./M.S.) scientists, to publications in high quality journals, to developing patents and working with industry to implement the technologies developed, as well as carrying out needed outreach activities (e.g. to focus groups, high school students, general public, etc.).

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension				
Direct Methods Indirect Methods				
Demonstrations	Web sites			

3. Description of targeted audience

The primary target audience of the Institute of Biological Chemistry is scientists within various disciplines in plant biotechnology, particularly plant biochemistry. Their research activities attract attention within the biochemical, forest products, and agricultural industries.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

Report Date 11/10/2009 Page 129 of 146

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	0	0	0	0
2011	0	0	0	0
2012	0	0	0	0
2013	0	0	0	0
2014	0	0	0	0

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

:2

:2

:2

:2

:2

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	30	0	30
2011	30	0	30
2012	35	0	35
2013	35	0	35
2014	35	0	35

V(H). State Defined Outputs

1. Output Target

Peer reviewed journal articles

30

30

:35

35

35

• Supporting graduate students on Agricultural Research Center and External Funding

28

28

:30

30

32

Report Date 11/10/2009 Page 130 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Increase numbers of qualified graduate students
2	Patents
3	External Funding in millions of dollars
4	Peer reviewed journal articles

Report Date 11/10/2009 Page 131 of 146

Outcome #1

1. Outcome Target

Increase numbers of qualified graduate students

2. Outcome Type: Change in Knowledge Outcome Measure

2010 28 **2011** : 28 **2012** : 30 **2013** 30 **2014** : 32

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 203 Plant Biological Efficiency and Abiotic Stresses Affecting Plants
- 204 Plant Product Quality and Utility (Preharvest)
- 205 Plant Management Systems
- 206 Basic Plant Biology
- 701 Nutrient Composition of Food

Outcome #2

1. Outcome Target

Patents

2. Outcome Type: Change in Knowledge Outcome Measure

2010 :1 **2011** :1 **2012** :1 **2013** :1 **2014** :1

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 203 Plant Biological Efficiency and Abiotic Stresses Affecting Plants
- 204 Plant Product Quality and Utility (Preharvest)
- 205 Plant Management Systems
- 206 Basic Plant Biology
- 211 Insects, Mites, and Other Arthropods Affecting Plants
- 511 New and Improved Non-Food Products and Processes
- 701 Nutrient Composition of Food

Outcome #3

1. Outcome Target

External Funding in millions of dollars

Report Date 11/10/2009 Page 132 of 146

2. Outcome Type: Change in Knowledge Outcome Measure

2010 5 **2011** : 5 **2012** : 5 **2013** 6 **2014** : 6

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 203 Plant Biological Efficiency and Abiotic Stresses Affecting Plants
- 204 Plant Product Quality and Utility (Preharvest)
- 205 Plant Management Systems
- 206 Basic Plant Biology
- 211 Insects, Mites, and Other Arthropods Affecting Plants
- 511 New and Improved Non-Food Products and Processes
- 701 Nutrient Composition of Food

Outcome #4

1. Outcome Target

Peer reviewed journal articles

2. Outcome Type: Change in Knowledge Outcome Measure

2010 30 **2011** : 30 **2012** : 35 **2013** 35 **2014** : 35

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 203 Plant Biological Efficiency and Abiotic Stresses Affecting Plants
- 204 Plant Product Quality and Utility (Preharvest)
- 205 Plant Management Systems
- 206 Basic Plant Biology
- 211 Insects, Mites, and Other Arthropods Affecting Plants
- 511 New and Improved Non-Food Products and Processes
- 701 Nutrient Composition of Food

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

Report Date 11/10/2009 Page 133 of 146

- Competing Programmatic Challenges
- Public Policy changes
- Competing Public priorities
- Economy
- Appropriations changes

Description

Research activities (scope and extent) are dependent upon: (1) securing extended extramural research funding and (2) recruiting high quality graduate students. Factors primarily affecting this area are the economy, appropriation changes, and competing public priorities.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- During (during program)
- Before-After (before and after program)

Description

Target productivity indices in all areas are assessed annually on a per faculty and per institute basis.

2. Data Collection Methods

Other (See Below)

Description

Data is collected on an individual faculty and individual student basis. The data is then evaluated for overall programmatic strength and in meeting the Institute goals and mission collectively. Annually, the overall progress towards meeting target goals is evaluated and changes in direction are made as needed and appropriate.

Report Date 11/10/2009 Page 134 of 146

V(A). Planned Program (Summary)

Program #17

1. Name of the Planned Program

Program in Crop Genetics and Breeding

2. Brief summary about Planned Program

The goals of this program are exploration of fundamental crop genetic mechanisms; crop germplasm screening and improvement; variety development and selection and testing for yield, end-use quality, nutrient use efficiency, pest resistance, and regional adaptability. This program has a century-long tradition of supporting the regional agriculture with improved genetic lines that have contributed to the economic growth of the PNW. Recent wheat varieties released by our program dominate the wheat acreage planted in eastern Washington. Barley, turfgrass, forages, bean, and oilseed germplasm selection and improvement are also being pursued.

3. Program existence: Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds : Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
201	Plant Genome, Genetics, and Genetic Mechanisms			66%	
202	Plant Genetic Resources and Biodiversity			10%	
204	Plant Product Quality and Utility (Preharvest)			24%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Wheat and barley are the dominant crops grown in rotation in the Inland Northwestern U.S., due to its Mediterranean climate, dry summers and deep loessial soils. These conditions are ideal for small grain cereal production. The access to seaports gives this region access to markets that are increasing their consumption of wheat based food products. The environmental conditions of the area are most conducive to producing lower protein, soft wheats that are used to produce eastern flat breads, noodles, and pastries. Increasing bread consumption is increasing the demand for hard wheat as well, which requires shifts in cultivar selection and cultural practices in order to consistently produce high quality grain in the area. Genetic improvement of end use quality and crop production attributes such as nutrient use and pathogen resistance are of primary interest. In addition, new research on biofuel and bioproduct attributes are being explored while genetic lines best fitted to sustainable agroecosystems of the region for oilseed crops such as soybean, rapeseed, mustards, and forage crops are also being pursued.

2. Scope of the Program

Report Date 11/10/2009 Page 135 of 146

- Integrated Research and Extension
- In-State Extension
- In-State Research
- Multistate Extension
- Multistate Research
- Multistate Integrated Research and Extension

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

The successful conduct of the research proposed for this program area assumes that: (1) Small grain cereal crops will continue to dominate the cropping systems of the inland Pacific Northwest. (2) Selective international markets will place increasing emphasis on end use quality and diversity of products. (3) There will be in increasing domestic market for high quality cereals, including those organically or sustainably produced. (4) The world will continue to increase its demand for biofuels and bioproducts. (5) Input costs will continue to rise, making grower competitiveness on the world markets essential. (6) This proposal also assumes that state and federal support will continue to provide resources necessary to sustain programs led by seven core faculty with adequate operating funds and technical support.

2. Ultimate goal(s) of this Program

The ultimate goal of this project is to create or select new agronomic crop cultivars grown in the Pacific Northwest that address emerging markets and production challenges in order to improve sustainability of the agriculture of the region. We will also produce new tools and fundamental knowledge about wheat and barley genetic characteristics that function towards crop improvement.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Year	Extension		Research	
	1862	1890	1862	1890
2010	0.0	0.0	50.0	0.0
2011	0.0	0.0	50.0	0.0
2012	0.0	0.0	50.0	0.0
2013	0.0	0.0	50.0	0.0
2014	0.0	0.0	50.0	0.0

V(F). Planned Program (Activity)

1. Activity for the Program

Develop, test, patent (PVP) and release new commercial cultivars of wheat and barley. Publish journal papers on the development of new breeding techniques that improve efficiency by using genetic markers and other advanced breeding and selection techniques. Establish patents on biologically unique organisms and processes. Publish journal papers on wheat and barley genomes, genome structure and function. Develop and adapt cultivars for specific management systems, such as direct seed, organic, perennial or animal-based systems. Publish papers and advance technology transfer of novel end use purposes for food, bioproduct and bioenergy applications for commercial adaptation.

Report Date 11/10/2009 Page 136 of 146

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension				
Direct Methods Indirect Methods				
 Other 2 (Grower/Industry Meetings) Other 1 (Field plot tours/Field days) One-on-One Intervention Demonstrations Workshop 	 Other 1 (Trade magazines) Newsletters Web sites 			

3. Description of targeted audience

The target audience includes other crop scientists, economists, commodity commissions, policy makers, legislators, agribusiness, food processors, and farmers.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults	Direct Contacts Youth	Indirect Contacts Youth
Year	Target	Target	Target	Target
2010	2500	3000	100	1200
2011	2600	5000	100	1300
2012	2700	7000	100	1400
2013	2800	9000	100	1000
2014	2900	10000	100	750

2. (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:1

2011 :0

2012:1

2013:0

2014:1

3. Expected Peer Review Publications

Year	Research Target	Extension Target	Total
2010	18	2	20
2011	19	2	21
2012	20	3	23
2013	21	3	24
2014	33	3	36

V(H). State Defined Outputs

1. Output Target

Peer reviewed journal publications

2010 25 **2011** 27 **2012** :29 **2013** :31 **2014** :33

Report Date 11/10/2009 Page 137 of 146

• Graduate students supported on Agricultural Research Center or other external funds

2010 22 **2011** 22 **2012** :23 **2013** 23 **2014** 23

• Plant Patents and plant variety protections (PVPs)

2010 2 **2011** 4 **2012** :2 **2013** :1 **2014** :1

Report Date 11/10/2009 Page 138 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Publications on improved knowledge of wheat, barley genetics, genome, new breeding tools impacting the
	national, international breeding, and genetic scientific community
2	Commercial cultivar releases that are adapted regionally.

Report Date 11/10/2009 Page 139 of 146

Outcome #1

1. Outcome Target

Publications on improved knowledge of wheat, barley genetics, genome, new breeding tools impacting the national, international breeding, and genetic scientific community

2. Outcome Type:

Change in Knowledge Outcome Measure

2010 25

2011:27

2012:29

2013 31

2014:33

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 201 Plant Genome, Genetics, and Genetic Mechanisms
- 202 Plant Genetic Resources and Biodiversity
- 204 Plant Product Quality and Utility (Preharvest)

Outcome #2

1. Outcome Target

Commercial cultivar releases that are adapted regionally.

2. Outcome Type :

Change in Action Outcome Measure

2010 2

2011:2

2012:2

2013 2

2014 :2

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

- 202 Plant Genetic Resources and Biodiversity
- 204 Plant Product Quality and Utility (Preharvest)

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Competing Programmatic Challenges
- Appropriations changes
- Competing Public priorities
- Public Policy changes
- Natural Disasters (drought, weather extremes, etc.)
- Economy
- Government Regulations

Description

External factors include year-to-year and location-dictated climate, farm economy, energy and bioproduct markets, international market demand, farm policy, stakeholder acceptance of change. Internal factors include stakeholder financial support and government support of staff, equipment and operating funds.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- During (during program)
- Before-After (before and after program)

Report Date 11/10/2009 Page 140 of 146

Description

Evaluation plan includes: (1) monitoring of research products by the internal accountability system at WSU (WORQS) during annual review, commission reviews, monitoring variety releases through the WSU variety release committee, number of PVPs and plant patents. WA Agricultural statistics will also be reviewed periodically for acreage and economic impact data.

2. Data Collection Methods

- Portfolio Reviews
- Mail
- On-Site
- Other (Faculty Reviews)
- Whole population
- Sampling

Description

Sampling is usually done, occasionally whole population mail surveys by NASS/WSDA for varieties planted of wheat and barley, some on-site surveys are conducted at meetings, portfolio reviewing includes faculty publications on WORQS, a WSU database that includes all reported faculty accomplishments.

Report Date 11/10/2009 Page 141 of 146

V(A). Planned Program (Summary)

Program #18

1. Name of the Planned Program

Program in Sustainable Crop and Soil Managment

2. Brief summary about Planned Program

The research in this program area is designed to develop profitable and environmentally sound crop and soil management programs that encourage soil conservation through reduced tillage and direct seeding, carbon sequestration through improved soil organic matter storage, and reduced nutrient losses to surrounding water bodies by judicious fertilizer use and the improved use of organic nutrient cycles. Constraints on direct seed adoption, such as optimizing seed zone moisture for early plant growth establishment and residue management induced shifts in nutrient cycles have been identified. Changes in crop rotations are feasible with direct seeding, which increases soil water conservation. Organic systems are being developed in vastly different agroclimatic zones throughout WA State in response to a rapidly growing segment of WA agriculture.

3. Program existence : Mature (More then five years)

'4. Program duration: Long-Term (More than five years)

5. Expending formula funds or state-matching funds : Yes

6. Expending other than formula funds or state-matching funds: Yes

V(B). Program Knowledge Area(s)

1. Program Knowledge Areas and Percentage

KA Code	Knowledge Area	%1862 Extension	%1890 Extension	%1862 Research	%1890 Research
102	Soil, Plant, Water, Nutrient Relationships			100%	
	Total			100%	

V(C). Planned Program (Situation and Scope)

1. Situation and priorities

Sustaining the soil resource is a major challenge in preserving the natural resource base of Washington. Productive soils underpin the diverse agriculture of the state, yet are quite vulnerable to wind and water erosion and nutrient depletion with intensive cropping. Soils of the Palouse and plateau regions of Eastern Washington are ranked among the most highly erodible soils in the U.S. Decades of soil erosion and sustainable soil management research have resulted in tangible results. University researcher-grower partnerships have spawned the Pacific Northwest Direct Seed Association, which has become an independent grower organization formed to promote the adoption of direct seeding in the PNW. Improved soil carbon sequestration and soil quality with reduced tillage cropping is of interest to producers and environmentalists. Crop rotation studies have documented impacts of direct seeding on carbon sequestration, which in turn has lead to contractual agreements (\$40,000) between the Natural Research Defense Council and the Pacific Northwest Direct Seed Association, According to NRCS (2001) data, more than 40% of Palouse cropland is now under no-till or conservation-till, and water erosion rates have been reduced from an average of 45 Mg/hectare in 1978 to an average of 38 Mg/hectare in 2001. Soil erosion from dry farmed cropland in all regions of the Inland PNW still exceeds tolerable rates. CTIC reports that direct seeded wheat in 2004 occupied 10-18% of the acreage, but as high as 60-70% in Columbia County. Incidents of air quality violations reported by local municipalities due to soil particulate emissions have decreased but have not been eliminated. Organic grain cropping systems research has increased the interest and responded to market demand for organic and sustainably produced grains. Locally marketed flour produced under a sustainable market label has increased consumer interest in local agriculture.

2. Scope of the Program

Report Date 11/10/2009 Page 142 of 146

- In-State Extension
- Multistate Research
- In-State Research
- Integrated Research and Extension
- Multistate Extension
- Multistate Integrated Research and Extension

V(D). Planned Program (Assumptions and Goals)

1. Assumptions made for the Program

The research proposed in this program assumes that there will continue to be an increasing societal demand for environmental services obtained from our agricultural systems, e.g. carbon sequestration, wildlife habitats, and waste recycling. In addition, we assume there will continue to be advancements in machinery technology and geospatial information for improving soil management systems. The proposal also assumes that state and federal support will continue to provide resources necessary to sustain programs led by eleven core faculty members in this group with adequate operating funds and technical support.

2. Ultimate goal(s) of this Program

The ultimate goal of this program is to create new crop and soil management systems to address emerging markets and production challenges that will improve sustainability of the agriculture in the region. It will create new soil management tools and fundamental knowledge about soil functioning and biological dynamics.

V(E). Planned Program (Inputs)

1. Estimated Number of professional FTE/SYs to be budgeted for this Program

Year -	Exte	nsion	Research		
	1862	1890	1862	1890	
2010	0.0	0.0	39.9	0.0	
2011	0.0	0.0	39.9	0.0	
2012	0.0	0.0	39.9	0.0	
2013	0.0	0.0	39.9	0.0	
2014	0.0	0.0	39.9	0.0	

V(F). Planned Program (Activity)

1. Activity for the Program

Develop bioproducts from crop residues. Demonstrate high quality and safe food from organic and sustainable production systems. Document environmental services provided by sustainable cropping systems. Improve efficiency and safety of waste recycling systems in agricultural production. Identify soil biological organisms important in crop production, residue decomposition and soil building. Develop soil management programs for new crop species and cultivars of evolving cropping systems in collaboration with crop genetic and breeding teams. Publish journal papers on unique findings related to the above topics. Establish patents on biologically unique organisms and processes. Disseminate information on the above systems to facilitate adoption and commercialization.

2. Type(s) of methods to be used to reach direct and indirect contacts

Extension			
Direct Methods	Indirect Methods		
 One-on-One Intervention Other 2 (Grower/Industry Meetings) Other 1 (Field plot tours/Field days) Demonstrations 	NewslettersWeb sitesOther 1 (Trade magazines)		

Report Date 11/10/2009 Page 143 of 146

Workshop

3 Description of targeted audience

The target audience includes other soil scientists, economists, commodity commissions, policy makers, legislators, agribusiness, and farmers.

V(G). Planned Program (Outputs)

1. Standard output measures

Target for the number of persons(contacts) to be reached through direct and indirect contact methods

	Direct Contacts Adults	Indirect Contacts Adults		Direct Contacts Youth	Indirect Contacts Youth	
Year	Target	Target		Target	Target	
2010	5000		5000	100	1000	
2011	7500	1	0000	100	1000	
2012	10000	1	2000	100	1000	
2013	12500	1	5000	100	1000	
2014	15000	2	0000	100	1000	

2 (Standard Research Target) Number of Patent Applications Submitted

Expected Patent Applications

2010:0

2011:0

2012:0

2013:0

2014:0

3. Expected Peer Review Publications

Year	Research Target	Extensio	n Target	Total
2010	25		10	35
2011	27		11	38
2012	29		11	40
2013	31		12	47
2014	33		12	45

V(H). State Defined Outputs

1. Output Target

Peer reviewed journal publications

2010 25

2011 27

2012 :29

2013 31

2014 33

Graduate students supported by Agricultural Research Center and other external funds

2010 22

2011 23

2012 :24

2013 25

2014 26

Report Date 11/10/2009 Page 144 of 146

V(I). State Defined Outcome

O. No	Outcome Name
1	Publications dealing with improved knowledge of crop rotations, nutrient cycling, soil building and carbon
	sequestration, fertility management, soil structure and soil water movement, and chemical movement in
	soils, tools for spatial monitoring and management.

Report Date 11/10/2009 Page 145 of 146

Outcome #1

1. Outcome Target

Publications dealing with improved knowledge of crop rotations, nutrient cycling, soil building and carbon sequestration, fertility management, soil structure and soil water movement, and chemical movement in soils, tools for spatial monitoring and management.

2. Outcome Type: Change in Knowledge Outcome Measure

2010 25 **2011** : 27 **2012** : 29 **2013** 31 **2014** : 33

3. Associated Institute Type(s)

•1862 Research

4. Associated Knowledge Area(s)

• 102 - Soil, Plant, Water, Nutrient Relationships

V(J). Planned Program (External Factors)

1. External Factors which may affect Outcomes

- Public Policy changes
- Competing Public priorities
- Economy
- Government Regulations
- Appropriations changes
- Competing Programmatic Challenges
- Natural Disasters (drought, weather extremes, etc.)

Description

External factors include year to year and location dictated climate, farm economy, energy and bioproduct markets, international and domestic market demand for organic and sustainable food products, farm policy and farm payments on commodity crops and soil conservation practices, stakeholder acceptance of change. Extreme pressures on producers due to rising input costs (fertilizers, fuel, pesticides) will apply downward pressure on adoption of conservation practices. Internal factors include stakeholder financial support and government support of staff, equipment and operating funds.

V(K). Planned Program (Evaluation Studies and Data Collection)

1. Evaluation Studies Planned

- Before-After (before and after program)
- During (during program)

Description

The evaluation plan includes monitoring of research products and outreach impact by the WSU WORQS internal reporting system during annual review and commission reviews, number of Plant Variety Patents and other plant patents. Organic agriculture growth will be monitored through agricultural statistics. Natural Resources Conservation Service and WA Department of Ecology evaluations of improvements in environmental services will also be monitored.

2. Data Collection Methods

• Other (See below)

Description

A number of agencies collect data associated with this program. The Washington State Department of Agriculture publishes agricultural statistics. The NRCS and EPA collect data on acreage in crops, tillage practices, and soil and water quality. The number of carbon sequestration contracts is tallied by the Pacific Northwest Direct Seed Association. The Washington Department of Ecology records the field burning acreage. The number of certified organic agriculture acres is recorded by the Washington State Department of Agriculture.

Report Date 11/10/2009 Page 146 of 146