2019 Annual Report of Accomplishments and Results

Indiana
Purdue University

I. Report Overview

The NIFA reviewer will refer to the executive summary submitted in your Plan of Work. Use this space to provide updates to your state or institutions as needed.

1. Executive Summary (Optional)			
No updates			

2019 Annual Report of Accomplishments and Results (AREERA)

II. Merit and Scientific Peer Review Processes

The NIFA reviewer will refer to your Plan of Work. Use this space to provide updates as needed or activities that you would like to bring to NIFA's attention.

Process	Updates
1. The Merit Review Process	No updates
2. The <u>Scientific Peer Review Process</u>	No updates

III. Stakeholder Input

The NIFA reviewer will refer to your Plan of Work. Use this space to provide updates as needed or activities that you would like to bring to NIFA's attention.

Stakeholder Input Aspects	Updates
1. Actions taken to seek stakeholder	No updates
input that encouraged their	
participation with a brief explanation	
2. Methods to identify individuals and	No updates
groups and brief explanation.	
3. Methods for collecting stakeholder	No updates
input and brief explanation.	
4. A Statement of how the input will be	No updates
considered and brief explanation of	
what you learned from your	
stakeholders.	

IV. Planned Program Table of Contents

No.	Program Name in order of appearance
1.	Global food security and hunger
2.	Food safety
3.	Childhood obesity
4.	Climate change
5.	Natural resources and the environment
6.	Sustainable energy
7.	Human, family, community health and well-being

V. Planned Program Activities and Accomplishments

Please provide information for activities that represent the best work of your institution(s). See Section V of the Guidance for information on what to include in the qualitative outcomes or impact statements. Add additional rows to convey additional accomplishments. You may expand each row as needed.

No.	Title or Activity	Outcome/Impact Statement	Planned Program
	Description		Name/No.
1.	Advancing Soybean	Issue: Growers are deeply concerned that annual gain in soybean yield over the past few	1.1 Global food
	Production through	decades has been minimal, especially compared to corn. Soybean yield over the past 90 years	security and hunger
	Soil Fertility and	has increased annually 0.34 bu/ac in the U.S. and 0.40 bu/ac across the Midwest. Yield gains	
	Plant Nutrition	have been attributed to advances in genetics, pest control and production practices. Recent	
		studies have documented faster yield gains since the 1970s than the previous 50 years. Much	
		of the fertility recommendations for soybean and nutrient allocation were based on research	
		from the 1970s. A greater rate of yield gain is desired by growers to increase profits.	
		Maximizing yield potential of soybean demands an updated investigation in nutrient uptake	
		and allocation. Fertilizer inputs are among the costliest inputs in soybean production.	
		Improving efficiency of soybean use of phosphorus (P) and potassium (K) will improve	
		profitability while reducing environmental impact (e.g., P in surface waters).	
		Target Audience: Farmers, soil scientists	
		What has been done: The overall research goal is to advance soybean yields by establishing	
		solid foundations in soil fertility and fine-tuning plant nutrition. Specific objectives include: (1)	
		Solid Foundations in Soil Fertility - Identify changes in critical soil fertility levels for modern	
		soybean cultivars and determine optimal fertilization approaches in crop rotations, and (2)	
		Fine-Tuning Plant Nutrition - Determine appropriate methods to improve plant nutrition from	
		cropping systems (previous crop, management intensity, cover crops), application methods	
		(soil, seed, foliar, irrigation), timings (previous season, pre-planting, in-season), and nutrient	
		sources/additives (commercial fertilizer, manures, cover crops, product formulations).	
		<u>Results</u> : Objective #1. Small plot yields were collected for corn and soybean in low potassium	
		(K) testing fields at Pinney, Throckmorton, and Southeast Purdue Ag Centers with historical K	
		application range. Soybean yields plateaued at the moderate soil K, which was the result of the	
		original application of 120 lb K2O/ac at Pinney. The yield increase was ~11 bu/ac in 2017 and	
		2018 at Pinney. Soybean yields increased linearly in 2019 with the historical increase of K	

applied; however, the yield levels were very low (22 to 30 bu/ac) due to extremely wet early	
season and dry late season. Soybean yields in 2017, 2018, and 2019 did not differ at	
Throckmorton regardless of the historical K application. The yield levels were mid-40s in 2017	
and 2018 and upper 40s in 2019. Higher yield levels may be needed to determine soil K effects	
on soybean. Corn yields were variable at Pinney and highly influenced by the soil K levels at	
Throckmorton. Soybean yields averaged 16 bu/ac in 2018 at Southeast with little variation	
from historical application of K. Fertilizer potassium rates of 0, 45, 90, 135, and 180 lb K2O/ac	
were applied for the 2019 season of soybean. Yields of two soybean varieties in 2019 were	
comparable across the K rates with 20 bu/ac with no application and increased to the plateau	
of 45 bu/ac with the application of 135 lb K2O/ac. Higher K supply improved soybean defense	
against downy mildew and hastened maturation by nearly 10 days. Leaf K concentration was	
nearly a linear increase with each application rate (0.7 to 2.0% K sampled at R3). Establishment	
of the fertilizer K response is planned for the 2020 season at the other locations.	
Sulfur: Since 2015, soybean yield has been documented in response to sulfur applications near	
LaCrosse (northwest Indiana). The greatest and most consistent yield response has been to	
ammonium sulfate (AMS) broadcast-applied at 20 lb S/ac prior to soybean emergence: 12	
bu/ac in 2016, 13 bu/ac in 2017, and 10 bu/ac in 2018. The research team also documented a	
6 bu response to the same treatment near Vincennes (southwest Indiana) in 2016. Multiple	
sources of S fertilizers were evaluated in 2018 and 2019 at this S-responsive site (LaCrosse IN)	
with promising results from pelletized gypsum and co-granulated AMS and elemental S. The	
same S-responsive site was used to determine the optimal rate of S from AMS and mixture of	
AMS and elemental S. Over 2016 and 2017, 10 lb of S as sulfate/ac maximized soybean yield	
(mid-60s). Thus, the total S rate needed to optimize soybean yield was 10 lb S/ac for AMS, but	
twice as much for the blend of AMS and elemental S (20 lb S/ac). Foliar applications (5 lb S/ac	
with spraygrade AMS) were promising in 2016, but mixed yield results in 2017 (4 to 7 bu/ac	
improvements). Crop injury has been noted in later season applications where temperatures	
are higher and leaf development is finishing. If leaf S indicate sulfur is needed (near critical	
levels of 0.25% S or N:S of 18:1), foliar application of 4 lb S/ac will optimize the yield with early	
reproductive stages. However, the positive yield response to the foliar S application was still 5	
bu/ac less than the standard pre-emergence application. Over 100 field-scale demonstrations	
and replicated trials were conducted across Indiana in 2018 to determine the distribution of	
soybean responsiveness to sulfur. The standard sulfur treatment was 15 to 25 lb of S/ac via	
AMS as close to planting as possible. Plant tissue samples (R2 to R3) and aerial imagery were	

taken on every field. Nearly a third of the plant tissue samples indicate a potential for sulfur	
response based on the nitrogen to sulfur ratio. The current approach to determine soybean	
responsiveness to sulfur is to apply 20 lb S/ac via AMS. This treatment was imbedded in twelve	
new trials in 2018 located across Indiana. The most interesting findings in 2018 was the	
influence of planting date on sulfur responsiveness or, in other words, soil temperature and	
moisture effects on mineralization of organic matter and nodulation/N fixation. Soybean	
planted early were more responsive (7 to 15 bu/ac) to various S applications on prairie soil (4%	
organic matter) compared to the same variety and treatments applied during the first week of	
June. The late planting of soybean was not impacted from any S application. Future research is	
directed to determine the distribution of S responsiveness fields and the management	
scenarios that explain the responses (positive or none).	
Objective #2. Preliminary studies evaluating the starter placement of UAN (28%), 10-34-0,	
thiosul, and K-Row 23 was initiated in 2016. The treatments ranged from rates, placement	
(single or dual), distance (2, 3, and 4 inches from the row), and row configuration (15-in vs. 30-	
in rows). Late planting conditions in wide rows seemed to have a marginal benefit from starter	
(UAN or 10-34-0 in 2016; KTS or ATS in 2018) and in-furrow (8 lb P2O5/ac via 10-34-0) in 2016	
and 2018. Sulfur starter fertilizer trials were initiated in 2019 near Wanatah (Pinney PAC) and	
West Lafayette (ACRE). Treatments were designed in a 2 x 3 x 4 factorial: two placement	
methods (single, dual offset of 2-in dribble), three S fertilizers (ATS, KTS, KFuse), and four S	
rates of 5, 10, 15, and 20 lb S/ac. Minimal yield responses were noted at Wanatah with the	
placement method, source, and rate. Near West Lafayette, the dual placement of ATS and KTS	
at 20 lb S/ac individually impeded soybean height three to four inches compared to untreated	
soybeans. Only the high rate of ATS in a single placement appeared to impact soybean growth	
(~2 inches shorter than untreated control). All three of these treatments yielded less than	
untreated control: ATS-Dual at 20 lb S was 9 bu less, KTS-Dual at 20 lb S was 13.5 bu less, and	
ATS-Single at 20 lb S was 4.5 bu less at West Lafayette. The single and the dual placement of	
ATS at 10 lb S/ac improved yields 3 and 2.5 bu/ac, respectively, with no effects on plant	
heights (positive or negative). 2019 was one of the latest planted seasons on record for	
Indiana, and thus, findings are preliminary and subject to evaluation under normal or even	
early planting conditions. In-furrow evaluation of orthophosphate was embedded in several	
trials in 2018 and 2019 at Wanatah and West Lafayette. Orthophosphate applied at 8 lb P2O5	
/ac increased soybean yield 4 bu/ac pooled across two locations in 2018, but did not affect	
yield in 2019. Undercover [®] research boom was designed and fabricated in 2016. Three trials	

		were initiated in 2017 to compare delivery method (Undercover vs. Over-The-Top) at R3 (first pod) and R5 (first seed) growth stages. Sulfur (West Lafayette only) and Manganese (West Lafayette and Wanatah) were the two nutrients of interests, which were applied alone and in single combinations with multi-nutrient foliar fertilizer, fungicide, and insecticide then all together. The source was the main driver with ~3 bu responses to sulfur and 8 to 14 bu response to protection or all together. Delivery method was mixed in terms of yield response, but nutrient concentrations were typically higher with the over-the-top method. The interaction of Source x Method was minimal. These three trials were repeated in 2019 and will be evaluated once data has been fully collected.	
2.	Applied Animal Behavior and Welfare	Issue. Issues related to animal welfare are increasingly under scrutiny from the public. To understand what is best for the animal, behavior is often used as a tool and indicator. The team is conducting research to develop novel behavioral and physiological indicators of animal welfare. Heat stress and disease are being addressed in turkeys. Other projects are evaluating how broiler chicken behavior changes in response to heat stress, and how behavior of laying hens changes in response to parasite (poultry bug) infestations. This research will identify changes in hen behavior that may be used as early indications of changes in hen health and welfare. Research to characterize feather picking behavior of domestic ducks will be conducted to develop methods to mitigate feather picking and improve duck welfare. A significant amount of work is being done to develop welfare indicators in swine. Thermal stress can result in losses in productivity, increase incidence of illness and morbidity and negatively impact animal welfare. The team received funding from USDA in 2018 to re-define the range of thermal comfort for sows of various parities and stages of gestation, evaluate the temporal pattern of physiological response of sows to heat stress, and create a decision support tool for farmers. Pig heat stress is being approached from a genetic angle. Breeding programs have improved genetic potential of swine, resulting in greater performance at 55-70% increase cost in heat production for lactating sows. This will reduce their ability to cope with high temperatures leading to economic losses, especially as number and severity of heat waves increase globally. Overall goal of this project is to identify novel traits and validate genomic selection methods to improve heat tolerance while improving lactating sow performance. Occurrence of pleasurable behaviors. Multiple data sources will be integrated to maximize efficiency of genomic selection for docility in Angus cattle. Temperament traits have a profound effect on the long-	1.2 Global food security and hunger

	animal productivity and welfare, longevity, and management practices. Furthermore,	
	aggressive animals are a safety risk to those involved in the farming operations.	l
	Target Audience: Public, farmers, and commodity groups.	l
	What has been done: (1) To develop novel behavioral and physiological indicators of animal	
	welfare. (2) To strengthen the scientific basis of animal welfare assessment and auditing	
	programs.	
	Results:	
	Heat stress in pigs – 1. Temperature preference of sows was found to fall within the Ag Guide's	
	recommended range but was at the low end of the range. However, stage of gestation did	l
	affect preference, with late gestation sows choosing cooler temperatures. Physiological data	
	as well as the decision support tool projects are still ongoing. 2. Genomics of heat tolerance:	
	heat tolerance based on reproductive traits is a heritable trait and can be used in selection	
	breeding schemes. Various genomic regions and candidate genes associated with important	
	biological functions have been identified in various pig chromosomes.	
	Poultry – Research has been conducted to examine welfare issues and behavioral indicators of	
	welfare in ducks, broiler chickens, and laying hens. In a recently completed trial with	
	commercial ducks, it was demonstrated that ducks primarily performed feather pecking	
	among conspecifics, rather than directing pecking at themselves, and that this pecking	
	behavior peaked at 27 to 29 days of age. Most of the pecking behavior was directed at the tail,	
	wings and back. Research is ongoing to examine strategies to mitigate injurious pecking of	
	ducks. Results from a trial investigating broiler chicken behavioral changes in response to heat	
	stress indicated that heat stress significantly affected broiler chicken behavior, with birds	
	spending less time preening during heat stress. Core body temperature differed depending on	l
	the behavior birds were performing and was higher when birds were panting compared to	
	when they were not panting. Research with laying hens is ongoing to examine how parasites,	
	poultry bugs, influence laying hen behavior. Preliminary results indicate that mortality and	
	productivity did not differ among hens in barns with poultry bugs and hens in barns with no	
	poultry bugs. However, feather damage and footpad condition were worse for hens in barns	
	with no poultry bugs, whereas keel bone deformities and fractures were worse for hens in	
	infested barns.	l
	Cattle – (1) Docility in American Angus is a heritable trait (0.44) and can be improved through	l
	genetic selection. (2) A systematic review of 62 studies was performed to better understand	l
	the underlying genomic mechanisms for various behavioral indicator traits in cattle, pigs, and	

		sheep. A total of 2,521 genomic regions and 1,014 candidate genes were retrieved for the	
		three species. Significant biological pathways related to suckling behavior, hippo signaling	
		pathway, insulin secretion, and lipid processes were found. Additionally, suggestive biological	
		pathways related to GnRH and estrogen signaling, steroid, and olfactory pathways, and in	
		<i>utero</i> embryonic development were identified.	
3.	Harnessing	Issue: Agricultural crops are valuable to the culture, economy and future of the Northeast. For	1.3 Global food
	Chemical Ecology to	example, the total value of principal crops in the Northeast was > \$5.32 billion and Northeast	security and hunger
	Address Agricultural	vegetable growers harvested over 133,000 acres with a value more than \$700 million. New	
	Pest and Pollinator	York alone ranked 5th in the nation for vegetable production and garnered \$323 million from	
	Priorities	fruit, berry and grape production. This region has numerous large cities that import food; thus,	
		a robust regional agricultural productivity is essential for food security for these population	
		centers. While the value of agriculture to the Northeast is indisputable, these agricultural	
		systems mostly remain reliant on pesticides to ensure profit. On behalf of stakeholders, the	
		Northeast IPM Center states that they "are enthusiastic about alternative, non-pesticidal	
		strategies that unite several disciplines and lead to sustainable solutions." Northeast regional	
		priorities for fruit, vegetable and specialty crops are replete with calls for research and	
		sustainable practices to reduce the impacts of insect pests and to protect valuable pollinators.	
		Organic agriculture continues to grow in both demand and production and is particularly	
		reliant on developing holistic, ecology-based systems.	
		Target Audience: Farmers (traditional, organic, specialty crops), scientists, public	
		What has been done: (1) Develop chemical ecology tools and information to support	
		sustainable agriculture by reducing damage by pests in crops such as potatoes, brassicas,	
		cucurbits, apples, blueberries, and sweet corn, while maintaining pollinator health in	
		agricultural systems. (2) Define variability of chemically mediated interactions between pests,	
		crops, and beneficial organisms in terms of plant chemistry, species interactions and landscape	
		factors in the Northeast. (3) Characterize the non-target effects of pesticides on pollinators	
		and natural enemies of pests. (4) Assess the impact of domestication on plant and animal	
		chemical ecology in agricultural fields and identify unifying patterns of human and natural	
		selection on chemical interactions of crop plants. (5) Extension to facilitate adoption and	
		awareness of science-based chemical ecology tools to support sustainable production.	
		<u>Results</u> : During the past year, work has taken place to address goals 1 (chem ecology tools), 3	
		(non-target effects of pesticides), and 5 (extension). One of these projects involves studying	
		the effects of volatile chemicals, emitted from cucurbit flowers or aggregation pheromones,	

on the attraction of striped cucumber beetles. This project is designed to provide organic control options for this species, which is one of the biggest insect pests in organic systems. During the summer of 2018, the effects of floral volatiles and live striped cucumber beetles (SCB) for mass trap-and-kill of SCB was observed. Thirty-six traps were placed in zucchini plots at two locations in northwest Indiana, a commercial organic farm and the Purdue University specialty crops farm. The traps were made of plastic gallon jugs that were drilled to create holes for beetles to enter and contained soapy water to drown the captured beetles. Each jug contained either: 1) floral volatiles, 2) ten live SCB, 3) floral volatiles + ten live SCB and 4) control (nothing). Lures were purchased from TRÉCÉ, Inc. and contained three floral volatiles known to be attractive to SCB: 1,2,4-trimethoxybenzene, indole, and trans-cinnamaldehyde. For treatments containing live beetles as bait, ten live SCB were placed in ventilated containers. These beetles were collected from the wild and were maintained in the laboratory until needed. After use, the wild-caught SCB were returned to the laboratory. Traps were placed in late May, near SCB emergence, and were removed in early September when SCB activity began to decline. Each week, SCB were scouted on 15 random plants within each plot to estimate the SCB population. Trap contents were collected weekly and counted. Lures were replaced every other week and live beetles were replaced weekly. The old bait containers were returned to the laboratory to count the number of surviving beetles. In late May and early June, the control and beetle traps were most attractive to beetles and those containing floral lures, regardless of the presence or absence of beetles, was repellent. Few beetles were caught throughout the summer and there were no differences in preference between treatments. However, that changed in late July when traps containing floral lures or beetles and floral lures became more attractive than traps containing beetles or nothing. These results reflect similar results from last year, where there is a shift in preference based on the beetle generation. During both years, the early season beetles that had overwintered from the previous year found the control traps that did not contain floral volatiles were most attractive to the adult beetles. Toward the end of the season, the second generation of beetles preferred floral and or floral/beetles to those without floral volatiles. 3,600+ beetles were trapped this year and 2,700+ the last, demonstrating that these traps could be an effective management option for organic growers. Because the majority of beetles were captured in the early and late season and beetle preference was different for each, it is recommended that the traps are used at the beginning and end of the growing season and that growers should tailor the lures based on the time of the season for maximum effect. Since other projects in the lab are

		focused on pollinator health, the impacts of pesticides on pollinators, including monarch	
		butterflies and bees (managed honeybees and wild species), was assessed. The primary work	
		for this project, now in year 3, compared an integrated pest management (IPM) vs.	
		conventional corn/melon system. Within this experiment, data was collected on pest	
		population dynamics, crop yield, bee health and abundance, and pesticide residues in various	
		matrices (leaves, soil, pollen, hive products). The data from summer 2019 are thus far	
		consistent with 2018; IPM plots had higher pest densities (but largely remained below	
		economic thresholds), but equivalent or higher yields and better performance of pollinators.	
		Pesticide residues are currently being quantified in the lab.	
4.	Regulation of	Issue: Photosynthesis is the process by which sunlight and carbon dioxide is converted into	1.4 Global food
	Photosynthetic	energy used by almost all life on Earth. Plant biomass, including foods, fuels and wood	security and hunger
	Processes	products, is primarily generated by photosynthesis. This project will address a key objective of	
		a large multistate project aiming to understand and improve the regulation of photosynthetic	
		productivity. A critical component of this project is focused on understanding the	
		developmental and environmental limitations of photosynthetic productivity. Stomata are	
		adjustable pores on the surface of leaves that act as the gateways for the exchange of gases	
		between the leaf and the atmosphere. Stomata are the primary means by which land plants	
		limit photosynthetic productivity in response to environmental signals. This specific project	
		will focus on understanding the stomatal regulation of photosynthesis. Experiments will be	
		conducted using methods that measure stomatal movements and photosynthesis to better	
		understand how stomata regulate photosynthesis. The main goal of these experiments is to	
		gain new knowledge on how stomata regulate photosynthesis. This improved understanding	
		will provide key genetic and physiological targets for plant breeders to improve photosynthesis	
		through altering stomatal behavior, in addition it will allow for the ability to predict the plant	
		productivity responses to environmental conditions.	
		Target Audience: Plant breeders, scientists	
		What has been done: Develop strategies to overcome limitations to photosynthetic	
		productivity caused by developmental and environmental factors.	
		Results: Stomatal aperture places one of the greatest limitations on carbon exchange and	
		photosynthesis. To better understand the ancestral mechanisms of stomatal regulation in	
		angiosperms, the nature of stomatal responses in ferns and the role of leaf anatomy and	
		hydraulics in regulating gas exchange in these early vascular plants was investigated. It was	
		determined that ancestral stomatal regulation in vascular plants is a very simple process	

		regulated by leaf hydraulics. Further, hydraulic function and embolism resistance in individual leaves is critical for determining leaf survival and the capacity to recover from drought stress.	
5.	Supply and Demand for Livestock Production Process Attributes: Analyzing Welfare Attributes for Cattle	Issue: Today's meat and dairy product shoppers are increasingly sensitive to processes employed in production of livestock products. Evidenced by labels seen displayed on products on supermarkets shelves, and in restaurants and advertisements, marketers are increasingly appealing to consumers by selling 'how' a product was produced. Livestock products evoke consumer sentiment regarding treatment and welfare of animals in production processes for meat and milk products. Beyond animal welfare, other attributes of increasing interest are treatment of employees, impacts on environment, and other externalities that production processes may produce. Consumers are linking concern for companion animals with preferences for rearing practices employed for food animals. This is exemplified by popularization of animal protection organizations, such as People for the Ethical Treatment of Animals (PETA) and the Humane Society of the U.S. (HSUS) and changing political landscape of food and agricultural markets. As increasing numbers of savvy consumers demand beef and dairy products produced from cattle reared under alternative management systems, cattle producers are faced with decisions surrounding how to rear cattle and produce meat and milk products. In today's volatile markets, agricultural producers are facing changes due to pressures from large retailer supermarkets and restaurants. Changes in production practices on farms can be attributed to market pressures rather than changes in legislation as increasing abilities of consumer groups to influence issues relating to animal handling. Pressure for change via traditional regulatory channels also exists. Cattle producers could potentially face changes in production, which are deemed acceptable in their operations by regulatory and market forces. Improved understanding of consumers' preferences and how those preferences correspond to observable demographics, household characteristics, or views on key social issues can aid livestock industries, and the entire meat and milk	1.5 Global food security and hunger

		Target Audience: Livestock producers, scientists, public, regulators, meat and milk	
		shoppers/consumers, veterinarians, livestock industry stakeholders.	
		What has been done: Previously completed and published research explored consumer	
		preferences for pig and dairy cattle handling and treatment practices. Building upon past	
		findings, the primary goal of this project is to improve the understanding of the impacts of	
		potential animal welfare enhancing changes in dairy and beef cattle rearing systems on the	
		supply and demand of beef and dairy products. Practices such as tail docking and dehorning	
		are currently receiving a great deal of attention for dairy cattle, while non-conventional	
		housing systems are a focus in today's modern beef production facilities. It is hypothesized	
		that consumers' perceptions of the welfare of beef cattle associated with various practices are	
		significantly different than those associated with dairy cattle. Objectives of continued work in	
		this area include comparisons of additional beef and dairy products to previously completed	
		work to continue to explore reasons for potential variation in consumer and producer	
		preferences for animal handling and treatment. The specific objectives of this research are to:	
		(1) Estimate consumer demand for beef and dairy products produced under various	
		production systems (and thus, with differing impacts on the perceived welfare of beef and	
		dairy cattle); (2) Understand the potential supply-side impacts of adoption of cattle welfare	
		attributes in existing production systems; and (3) Evaluate potential costs and returns of	
		investments in various potential cattle welfare production attributes in a range of production	
		systems currently used in livestock production, as well as systems currently being proposed.	
		<u>Results</u> : Using a series of representative samples of respondents from the U.S. it was found	
		that demand for production process attributes varied across animal species and the specific	
		food product produced. Positive and statistically significant mean differences in willingness to	
		pay estimates were identified for dehorning with pain relief and polled dairy cattle in	
		consumers making purchasing selections among cheddar cheeses. Consumer demand for	
		pasture access of dairy cattle was also found, and as with most other attributes identified, that	
		demand varied across consumers with differing demographics (i.e., gender, household income,	
		and region of residence).	
6.	Industrial Help	Issue: Research and production of industrial hemp (IH) was allowed under the 2014 U.S. Farm	1.6 Global food
	Production,	Bill sec. 7606 Legitimacy of industrial hemp research and under Indiana Public Law Indiana	security and hunger
	Processing and	Code at 15-15-13 (Senate Bill 357). The state bill authorizes industrial hemp production while	
	Marketing in the	federal law authorizes work but limits the efforts to "purposes of research conducted under an	
	U.S.	agricultural pilot program or other agricultural or academic research." Purdue University has	

been actively involved in the agricultural pilot program since 2014. Some examples of IH	
efforts taking place at Purdue include: (1) Have developed a team of faculty and extension	l
educators from across the state and college. (2) Applied for and received a federal importation	l
permit to allow us to bring hemp seed across the border from Canada and Europe. (3) At the	l
end of August 2015, we held the first field day on hemp in Indiana. Field days were planned for	l
experienced farmers, new farmers-organic farmers, law enforcement, extension educators,	l
and the general public. We have held two subsequent field days related to hemp production.	l
We have graduated an MS and Ph. D. student who worked on hemp and we are in the process	l
of preparing publications from the work. With the changes under Hemp Farming Act of 2018,	l
we have: (1) Hired an Extension specialist to help growers in the state set up their hemp	l
production programs. (2) Worked with some 30 companies as they start the process of	1
establishing hemp as a commodity in the state. (3) Worked with some 100 farmers as they	1
develop their licensing packages and get ready for large scale productions.	l
Despite the economic importance of IH in Indiana, best practices to maximize yield and profits	l
remain unclear. As such, this project aims to provide recommendations on best agronomic	l
processes for IH in Indiana and across the Midwest.	l
Target Audience: Farmers, public, scientists	l
What has been done: In the first year of research on agronomic practices to determine effects	l
on grain, fiber, or dual-purpose productivity as functions of establishment practices, soils, and	l
planting dates in field studies.	l
<u>Results</u> : Field trails have addressed nutrient levels, harvest issues, disease and insect pressure	l
and fiber production. Work within the group (led by Dr. Kevin Gibson) showed few peer-	l
reviewed studies on hemp exist on any subject and weed control and weed management.	l
Specifically, only three studies designed to address weed management issues exist in the	l
literature dating back to 1900. Thus, there is an extensive gap in the hemp literature related to	l
the impact of weeds on hemp production. Research was conducted to characterize the growth	l
and phenology of hemp cultivars and determine the effect of delayed planting on the	l
phenology and growth of seed and fiber hemp varieties in the Midwest. Delayed planting	l
generally reduced the onset and duration of female flowering and the time to first mature	l
seed formation, but the magnitude of these effects varied among cultivars.	l
Other Information: https://purduehemp.org/	I

7.	Driftwatch: Purdue	Issue: Starting mid-August 2019, horses and a group of mosquitoes from Elkhart County,	1.7 Global food
	Extension Responds	Indiana tested positive for Eastern Equine Encephalitis (EEE) virus. In late September 2019,	security and hunger
	to Save Lives,	horses began dying of EEE in northern Indiana and southwestern Michigan. LaGrange County	
	Horses, Crops and	has nearly 15,000, and Elkhart County has just over 10,000 horses. When horse cases of EEE	
	Bees	appear, human cases follow. EEE has a mortality of nearly 90% in horses and nearly 33% in	
		humans who get sick from a bite from an infected mosquito. Deaths of four people in	
		Michigan, and three people hospitalized in Elkhart County occurred when the Indiana State	
		Board of Health approached county commissioners about spraying to control mosquitoes.	
		Mosquitoes become infected when they feed on infected wild birds. Infected mosquitoes can	
		spread EEE to horses and people. Infection can occur anytime during mosquito season (May to	
		October), but is most common in late summer months. Aerial spraying of insecticide to control	
		for mosquitoes can negatively affect organic farming acreage and beehives, risking loss of	
		organic certification requiring a three-year transition to recertify, and loss of hives and bees.	
		Target Audience: Organic growers, beekeepers, public	
		What Has Been Done: An alert was issued by the Indiana State Department of Health (ISDH),	
		"Indiana Health Alert Network Notification- Sept. 12, 2019, Eastern Equine Encephalitis Virus	
		Activity Detected in Northern Indiana." The Indiana State Department of Health, in	
		conjunction with local health departments and the Centers for Disease Control made plans for	
		aerial spraying efforts to reduce mosquito populations in LaGrange, Elkhart and Noble	
		counties. CDC provided emergency funding to ISDH. On September 26, 2019, ISDH offered	
		state support for mosquito spraying. Participants in a planning call for spray events, included	
		Elkhart County Government, Purdue Extension, ISDH, Indiana State Board of Animal Health,	
		and Indiana State Department of Natural Resources. The plan goal was to interrupt EEE virus	
		transmission by killing vector mosquitoes at breeding sites. Aerial applications were planned	
		for Elkhart, LaGrange and Noble counties, sites designated wetlands and within a 5-mile radius	
		of EEE-positive horses and mosquitoes.	
		Purdue Extension responded. Elkhart County Commissioners approached Purdue Extension-	
		Elkhart County about reaching out to beekeepers and organic farmers about scheduled	
		spraying. Purdue Extension specialists quickly provided information on insecticide to be used	
		and how to protect bees, and educators were sharing and distributing these messages, along	
		with how to opt-out of spraying for organic farmers. Purdue Extension–LaGrange County was	
		notified by Indiana and local health departments about the spray zones and dates. Over 315	

	Amish organic farms in and near the spray zones for LaGrange and Noble counties were	
	notified. Purdue Extension assisted in registering organic acreage and beehives on Driftwatch.	
	DriftWatch and BeeCheck are free, voluntary online specialty crop and beehive registries and	
	mapping programs created by Purdue's College of Agriculture, operated by non-profit,	
	FieldWatch. This tool improves communication and collaboration between producers of	
	specialty crops, beekeepers, and pesticide applicators via technology where producers and	
	beekeepers map their sites. Commercial pesticide aerial applicators access Driftwatch to	
i	identify at-risk acres and beehives, then upload maps to their flight plans which automatically	
:	stop spraying as the airplane goes over registered fields and beehives.	
	Using the USDA Integrity database for local organic growers, Extension Educators reached out	
i	to all organic growers with information to register their farms in Driftwatch. Community	
	objections and concerns to spraying were anticipated, so communication reached all residents	
i	in affected counties. Educators distributed instructions on how to register, assisted individuals	
i	in registering organic fields and beehives, completed several television and local newspaper	
i	interviews, and responded to hundreds of phone calls from residents. Educators located every	
	beehive in the spray zones and called owners, and notified organic farmers and beekeepers,	
	agricultural groups, and the Michiana Beekeepers Association via emails and social media. In	
	LaGrange County, where most organic farmers are Amish and do not use computers,	
	communication was done in person.	
	In Elkhart County, on October 2, 2019, aerial insecticide spraying for mosquitoes was	
	conducted in two areas of the county, covering 32,000 acres. Spraying started at 7 p.m.	
	Weather delayed spraying in the northwest spray zone for 2.5 hours. Blast emails were sent	
	over the course of the spray days to lists of farmers, Master Gardeners, horticultural	
	professionals, beekeepers, local leaders and people with horticulture interests. During the	
	evening of the spraying, Purdue Extension sent messages to update them on the status of the	
:	spraying. In LaGrange and Noble Counties, on October 2 and 3, 2019, at dusk, the spraying	
	occurred in an area covering over 11,000 acres.	
	Results: These aerial spraying events effectively stopped the spread of EEE in Indiana. No	
	discernible bee deaths were reported after the event (some bees reportedly died in unrelated	
l	incidents after the spraying event). One human and 14 horse fatalities occurred prior to the	
:	spraying event. No new cases occurred after the spraying. As a result of Purdue Extension	
	efforts, Elkhart County registered 35 new beekeepers, enrolled 470 hives, and 6 new organic	
·	farms (about 1,400 acres), and LaGrange County added more organic farms to registration.	

		This will help with future communication for safety with insecticide applications for organic	
		and beekeeper operations. Purdue Extension efforts to communicate, educate and register	
		organic farms and beehives continues since the spraying occurred. These efforts associate	
		safety for humans and horses from EEE, and organic farms and beehives from insecticide	
		spraying in Indiana.	
		Other Information: https://driftwatch.org/.	
8.	Indiana Small Farm	Issue: Small farms (by area or acres) are significant in Indiana. Over the last 30 years, according	1.8 Global food
	Conference:	to the U.S. Census of Agriculture, the number of Indiana farms has decreased significantly	security and hunger
	Building Capacity	from 70,506 in 1987 to 56,649 in 2017. During that time, the only farms to increase in number,	
	and Networking for	other than farms of 2,000 acres or more, are farms with 49 acres or less, which increased from	
	Small-Scale Farmers	20,544 in 1987 to 26,287 in 2017. Farms with fewer than 180 acres represent 71% of Indiana	
	in Indiana	farms. During this time, many Indiana farms had to expand to remain profitable. This is not an	
		option for many small-scale or beginning farmers, or people who would like to start farming.	
		Unlike many Indiana commodities, farms that have increased in number in recent years have	
		been vegetable, fruit, some livestock farms, and organic farms. According to the 2017 census,	
		Indiana has 23,262 producers who identify as new or beginning. These numbers indicate a	
		market for small-scale agriculture production in Indiana and farmers are filling this demand.	
		The Indiana Small Farm Conference provides education and an opportunity for peer	
		networking for these small-scale and beginning farms in a state that has traditionally lacked	
		these resources.	
		Target Audience: Small-scale farmers	
		What Has Been Done: Since the inaugural Indiana Small Farm Conference in 2013, it has	
		served as an annual educational and farmer-to-farmer networking event for the small-scale	
		and diversified farming community. Goals are to: 1) educate and increase awareness on a	
		variety of topics in agriculture; 2) increase adoption of best practices; and 3) bring a variety of	
		people together, create a space for networking, and increase collaboration. Purdue Extension	
		hosted the sixth conference in March 2018, with 506 attendees, 50 exhibitors, and the seventh	
		conference in 2019, with 431 attendees and 40 exhibitors. Conference agendas contain	
		content for crop production, livestock operations, sustainable practices, and technologies,	
		business operations and marketing. For 2018, presenters shared approaches for improving soil	
		health, practicing food safety, marketing products, accessing farmland, livestock production,	
		setting prices at the market, and more. Topics presented in 2019 focused on crop and livestock	

	production, business planning, sustainable agriculture, marketing, food safety, urban	
	agriculture, and exploring options for diversifying farm operations.	
	For the 2018 conference, a nine-month follow-up online survey was implemented. For the	
	2019 conference, an online post-survey was emailed to participants. For the 2018 follow-up,	
	there were 43 respondents. For the 2019 post, there were 153 respondents. Demographic	
	data were male 50.34%, Hispanic 2.78%, those who had not attended the Conference in the	
	past 50.34%, those who currently farm 68.06%, and those affiliated with an organization, farm,	
	operation or group that is minority- or women-led 38.57%. There were 34% in the 30-39 age	
	group, 73.61% were White, and 42.67% with Bachelors' degrees.	
	Results: Since attending in 2018, 86% reported they had shared information they learned	
	about agricultural practices, business or operation details, the positive experience and helpful	
	resources of the conference, and specific individuals or farms that shared their experiences	
	with others, including farmers, co-workers/colleagues, and groups. Some 67% continue or	
	develop relationships, connections or interaction with others they met at the conference,	
	expressed as building partners/customers, identifying with whom they continue connections,	
	connection to the structured networks, describing how they continue to connect and use of	
	social media, that they met someone new, and that they have ongoing relations and still keep	
	in touch. Many (77%) adopted recommended agricultural practices, including farming (33%),	
	sustainable practices and technologies (31%), producing crops (24%), and raising livestock	
	(9%). Most frequently reported adopted practice was cover cropping. For business or	
	operations, adopted practices were marketing, farmers market sales, and ways to track	
	income and expenses. Many (65%) adopted practices that were very/extremely helpful,	
	resulting in increased efficiency (25%), conservation of resources (25%), increased yields	
	(15%), increased economic return (13%), and reduced inputs (10%). Some 48% adopted	
	recommended practices for business planning, finances, or marketing, including posting on	
	social media more often. About a third had started a new business plan, revised an existing	
	plan, or completed a new business plan. Two respondents had started a new business since	
	the conference.	
	2019 Conference respondents learned about sustainable practices and technologies (63%),	
	diversified farming (58%), business planning, finances or marketing (48%), crop production	
	(44%), and livestock production (25%). Many (76%) learned about available assistance and/or	
	technical support: Purdue Extension (75%), USDA/NRCS (51%), Farm Service Agency (26%), and	
	ISDA (25%). Other assistance included various networks, coalitions and co-ops like Black	

		National Young Farmers Coalition, Hemp Co-ops. Others mentioned included SARE, Veteran	
		Assistance, SWCD, Hoosier Mushroom Society, BOAH, Indiana Brown, Conservation Cropping	
		Systems initiative, Farm Bureau, 1000 safety training programs, 10 Sustainable Food Systems,	
		diversified equipulture in a level feed system with almost 00% learning about the fole of	
		diversified agriculture in a local rood system, with almost 90% learning some, quite a bit,	
		and very much. Most respondents, agreed/strongly agreed the conference provided a good notworking opportunity (20%), connected with a more experienced former/producer (22%)	
		and developed relationships interactions or connections with other farmers, producer (85%),	
		neonle interested in diversified farming and local food systems (92%). A "Trade Show	
		Passport" was used to encourage more interactions between attendees and exhibitors. There	
		were 25 attendee and ten exhibitor Trade Show Passport participants, which accounted for	
		250 interactions that might not have occurred otherwise. Most (94%) planned to adopt	
		recommended practices in farming, crop production, livestock, and sustainable practices and	
		technologies, including: crop planning, growing mushrooms, fruit orchards, livestock, soil	
		health, greenhouse, fungal/ecosystem integration, cover crops, seed saving, lean farming, and	
		cucumber grafting. Many (61%) planned to adopt recommended business planning, finances,	
		and marketing practices including: business planning, ideas for market, social media, market	
		analysis, and marketing strategies. Some 47% started developing or have completed a	
		business plan for their operation/organization, 42% intend to start a new or revise an existing	
		business plan, and 17% plan to start a new business within the next year. Most (93%) reported	
		the conference was inspiring. The Net Promoter Score® was 47 indicating a positive customer	
		experience. The annual Indiana Small Farm Conference contributes to the knowledge,	
		networking, and adoption of practices for small-scale farming operators and enthusiasts across	
		the state.	
		Other Information: https://www.purdue.edu/dffs/smallfarms/small-farm-conference-2020/.	
9.	Professionals and	Issue: Unmanned Aerial Vehicles (UAV) technology is becoming increasingly popular including	1.9 Global food
	Hobbyists Prepared	hobbyists and commercial uses in agriculture, marketing, surveying, and real estate. Many	security and hunger
	tor Safe and Legal	UAV operators or potential operators do not have proper understanding of required	
	Use of Drones	certifications for use. Others have the equipment but are unsure of potential applications to	
		their operation. Safe and legal use of UAV for any purpose is important.	
		Iarget Audience: Public, Regulators	

What Has Been Done: Purdue Extension developed a new program to help participants	
engage in safe and lawful operation of UAVs (AKA drones) for personal and professional	
applications. The UAV Training series was 16 hours and addressed device maintenance,	
meteorology, data management, and developing flight plans. The first half was on material for	
the FAA Part 107 Remote Pilot Knowledge Test. The second half included hands-on flight and	
applications. A total of 54 participants attended one of three series offered in 2019.	
Participants most often indicated their role as farmer or state regulator. Of the 32 responsible	
for management decisions for an agricultural operation, most (76%) managed more than 1,000	
acres.	
<u>Results</u> : As a result of the training, respondents (100%) reported being more aware of the	
legalities and safety protocols of UAVs and were better able to understand applications	
associated with UAV technology. All but one (98%) reported being more aware of the	
troubleshooting techniques. Respondents (94%) felt prepared to take the FAA Remote Pilot	
Knowledge Test, required for legal operation, and 74% plan to pursue test completion and	
application filing to become a Drone Pilot. Some 21% reported they are considering taking the	
test at some future point. Most participants (93%) reported they intend to use UAV	
technology in their professional capacities, which included farming and regulatory inspections	
related to farming. Many of the 43 respondents (84%) who felt they may or will save money by	
investing in UAV technology, stated that using the technology will save time in scouting fields,	
faster identification of problem areas in their fields, and knowing where to follow up with in-	
person inspection of potential problem areas. Since the training, over 30 participants have	
contacted Purdue Extension with news that they passed the FAA Remote Pilot Knowledge	
Test. Some 46 participants reported the UAV training series to be a valuable investment for	
the fees they paid. The Net Promoter Score was +56.6 which indicates excellent client	
satisfaction. Participants stated the training was useful, including "Great program. Was one of	
the better extension education programs I have been to. Right up there with the Diagnostic	
Training Center Days." "Valuable program at an appropriate time!" Another participant	
expressed "Awesome program! Informative and enjoyed it!" By offering this training, Purdue	
Extension can reach new audiences, enhancing opportunities for those in agriculture, and	
expanding beyond to include emergency responders, architects, engineers, construction	
companies, forestry and wildlife experts, videographers, urban planners/county	
commissioners, insurance adjusters, and others, to contribute to safe and legal uses of UAVs.	
Other Information: https://extension.purdue.edu/uav/.	

10.	Youth Experiences	Issue: The United Nations Food and Agriculture Organization estimates about 815 million	1.10 Global food
	at the Heifer Ranch	people (10%) of the 7.6 billion in the world, were suffering from chronic undernourishment in	security and hunger
	Increase	2016. In Indiana, 1 in 7 people struggles with hunger, including 1 in 6 children. The world	
	Understanding of	produces enough food to feed everyone, however, many people in the world still do not have	
	Global Hunger and	enough income to purchase (or land to grow) enough food or access nutritious food.	
	Poverty	Target Audience: Youth	
		What Has Been Done: Eleven Indiana county teams, comprised of four youth and one adult	
		each, traveled to Heifer International in Perryville, Arkansas to participate in the Global	
		Gateway Experience. These 44 youth and 11 adults were immersed in team-building activities	
		and experiences meant to provide a greater understanding of global hunger. Participants	
		experienced the Global Village where they were able to see recreations of urban slums,	
		bamboo huts, shanties, refugee camps, and more. Groups of youth and adults were assigned	
		to each type of village and expected to prepare a meal with limited resources and to stay	
		overnight. This allows for experiences with inadequate shelter, food, water or cooking fuel.	
		Upon return to Indiana, each team presented an activity to provide others with a better	
		understanding of global hunger issues.	
		Results: After participating in the Global Gateway Experience, youth shared their new	
		perspectives: 100% described the importance of livestock as a resource for ending hunger and	
		poverty, 98% feel like they are able to help end world hunger and poverty, 93% are more	
		curious about international affairs on TV, the web, and other media after participating in this	
		experience, 91% strongly agreed that because of this experience, they are more accepting of	
		different cultures of people, and 81% strongly agreed that they can describe the difference	
		between malnutrition and starvation. Regarding service to the community, 95% will encourage	
		others to volunteer in their community, 93% will participate in a community service project,	
		82% will help plan a community service project, and 75% will lead a community service	
		project. Youth stated their favorite part: "I really enjoyed spending the night in the village	
		because it helped me to see what extreme poverty is like." "Being able to camp in the villages	
		really gave me a perspective and an unforgettable experience." "I liked to learn how people in	
		different places and in poverty live, and I liked when we work together." Through Global	
		Gateway Experience, Purdue Extension is contributing to positive youth development for	
		community awareness, service, and leadership relating to poverty and hunger.	

11.	Building Organic	Indiana organic field crops have increased in operations 45% and acres 36% since 2016.	1.11 Global food
	Farming in Indiana	There were 536 farms on 36,629 acres in 2019 (Mercaris, 2019 Organic & Non-GMO Acreage	security and hunger
		Report), yet Indiana is still lagging in organic field crop production compared to the North	
		Central Region. Meanwhile, demand for organic grains continues to grow, and a shortfall of	
		U.S. production has forced users of organic grains to satisfy demand with imports. Based on	
		USDA data and estimates from Mercaris, about 26% of organic corn supplies and 75% of	
		organic soybean supplies were imported during 2018-2019 crop marketing year. This	
		mismatch in demand and domestic supply provides opportunity for Indiana grain farmers to	
		diversify. Educational programs and resources are lacking for Indiana farmers looking to enter	
		organic marketplace, along with absence of networking opportunities to connect with input	
		suppliers, grain buyers, consultants, certifiers, experienced organic farmers, and other	
		transitioning-to-organic farmers. Despite potential financial returns from organic grain price	
		premiums, organic production presents unique risks, particularly with navigating the 36-month	
		transition. Farmers indicate barriers and challenges faced in transitioning to organic	
		production: weed management, certification process and expenses, sourcing organic inputs,	
		managing soil fertility, and maintaining yields. Farmers cite one-on-one technical assistance	
		and support from consultants as the most-needed resources. The U.S. Organic Grain	
		Collaboration identified a shortage of technical service providers who understand organic	
		production. To substantially grow organic acreage, optimize organic production systems, and	
		maximize potential for success, an increase in number and geographic spread of service	
		providers is necessary.	
		Target Audience: Organic growers, growers in transition to organic, growers starting organic	
		production, and crop/organic consultants.	
		What Has Been Done: Making organic production information available to Indiana farmers,	
		Purdue Extension partnered with Jasper County Soil and Water Conservation District (SWCD)	
		and the IDEA Farm Network to host the Indiana Organic Grain Farmer Meeting. This 2-day	
		annual education, networking and trade show has grown to meet demand for more organic	
		grain production and marketing information. The first day was Transition to Organic Grain	
		Production delivered for farmers exploring or just starting a transition of acreage to certified	
		organic grain production, including topics of addressing the National Organic Program (NOP),	
		organic certification, inspection, and recordkeeping, organic crop budgets and markets, and	
		organic transition strategies and key tools. The second day, attendees selected from advanced	
		production and marketing presentations: diversified crop rotations, value-added small grain	

production and marketing, organic hay production and marketing, nitrogen management in	
organic cropping systems, weed management, grain market update and buyer panel	
discussion, organic crop insurance options. The trade show allowed networking among	
attendees and industry representatives from seed dealers, input suppliers, equipment reps,	
agronomists, and certification agencies. Over 90 participants attended day 1, and over 180 day	
2, with over 200 attending. Most (78%) were from Indiana, but some traveled from Illinois,	
Kentucky, Michigan, Ohio, and Wisconsin. About 57% were farmers, and the rest agricultural	
professionals, extension, conservation and certification agency staff. Most (81%) were male,	
98% non-Hispanic, and 96% white. About 58% were under age 50, and 43% under 40.	
To showcase existing organics practices, Purdue Extension hosted the Organic Agriculture	
Summer Series with three Indiana organic farming operations. The Series provided farmers	
and agricultural professionals tours of different systems of management on working Indiana	
organic grain operations. Each site opened had an update on organic grain price trends,	
considerations in transitioning to organic grain production, and an overview of the Purdue	
Extension organic program. Then host farms delivered presentations about their organic	
cropping operation, including transition strategies/considerations, crop rotation, fertility and	
weed management, marketing, and certification. Next, an Office of Indiana State Chemist	
representative presented Fertilizer Application Rules, emphasizing requirements with staging	
and application of manures, which are crucial in organic cropping systems. Ending each day,	
were field rotations, based on aspects of the host farm: weed management equipment and	
control strategies, inter-seeding cover crops, seed corn production, hempgrain production,	
markets, and regulations, manure management, and soil health and realities of organic no-till	
systems. The Summer Series had 75 attendees (68% male) with Noble Organic Grains, 51	
attendees (80% male) with Klemp Family Farms, and 71 attendees (90% male) with Ramerview	
Holstein Farm, for a total of 197 attendees (79% male) for the series.	
To address the lack of service providers for organic production, Purdue Extension partnered	
with industries, non-profits, agencies, and agronomists, and started the Organic Agronomy	
Training Service (OATS), a collaboratively managed, science-based train-the-trainer program	
for agriculture professionals working with organic or transitioning producers in the U.S.	
Training included basic agronomic services, shifts in thinking for success in organic crop	
production, organic certification and inspection, advising producers on compliance with all	
regulations of the NOP, profitable and diverse crop rotations that meet rotational	
requirements, organic weed control strategies, integration of cover crops and reduced tillage,	

	organically-approved pest control strategies, basic organic fertility, and current research for	
	organic production. Three OATS programs were delivered across the North Central Region:	
	North Dakota, Indiana, and Wisconsin. Instructors included USDA researchers, Land Grant	
	University faculty, professional agronomists, Extension educators, and farmers. Continuing	
	Education Units (CEUs) were available for certified crop advisors. A total of 54 people attended	
	OATS, and 43 provided demographic information: 76% male, 93% non-Hispanic, 95% white;	
	22% age 18-29, 32% age 30-39, 10% age 40-49; and 34% age 50 and older. Participants were:	
	23% agronomist/CCA, 28% ag business/ag retail, 19% farmer, 9% extension/NGO, 2%	
	government, 19% other. Most (79%) had experience working with organic or transitioning	
	clients.	
	Results: For Meeting Day One - Transition to Organic Grain Production, 59% of attendees	
	(n=53) completed the post-program evaluation. As a result of attending, respondents	
	improved their understanding of: organic transition strategies and considerations (98%),	
	certification to the NOP (89%), basics of organic grain production (88%), organic crop budgets	
	and financials of transition (77%), and organic grain markets (77%). Most (96%) plan to apply	
	ideas learned during the workshop to their farm operation or agricultural	
	business/organization, including cover crops, crop rotations, financial planning, and transition	
	cropping strategies. For those operating a farm, 97% plan to use what they learned to develop	
	or make changes to their farm's organic transition plan or current organic production,	
	including recordkeeping techniques, market opportunities, and cropping system strategies.	
	Also, 92% plan to share information learned with other individuals, such as farmers,	
	colleagues, and peers. For Meeting Day Two, 38% of attendees (n-68) completed evaluations.	
	As a result of the meeting, respondents improved understanding of organic crop rotations	
	(97%), weed management (91%), value-added and food-grade production (87%), and organic	
	grain markets (81%). Nearly all respondents (99%) plan to apply ideas learned to their farm	
	operation or agricultural business/organization, including crop rotations, weed management,	
	and adding small grains to their cropping systems. Of those operating a farm, 94% plan to use	
	information learned to develop or make changes to their farm's organic transition plan or	
	current organic production. In addition, 96% plan to share information learned during the	
	program with other individuals, such as farmers, colleagues, and peers.	
	For the Summer Series, 22 (29%) responded from Noble Organic Grains farm indicating	
	improved understanding of organic transition and cropping systems and organic seed corn	
	production (91%), and inter-seeding cover crops and hemp agronomics and regulations (86%).	

At the Klemp Family Farms, 18 (35%) respondents indicated improved understanding of
mechanical weed control in organic row crops (88%), manure application regulations and
manure management in organic row crops, and organic transition and cropping systems (83%).
At Ramerview Holstein Farm, 26 (37%) respondents indicated improved understanding of soil
health in organic row crops and roller crimping (96%), mechanical weed control and flaming in
organic row crops (92%), organic transition and cropping systems (88%), and manure
application regulations (84%). For the full series, 60 (83%) indicated they plan to apply ideas
learned to their farm operation or agricultural business/organization, including: "Consider a
seed production contract." "Study more on [crop] rotation and weed suppression." "Every
field is different. Get off the tractor and evaluate and adjust as needed. Must think way out
ahead of your actions. Better understanding of rotary hoe and weed zapper." "Flame weeding;
shorter season hybrids." "Not farming yet, but on my way and field days help. Crop rotations,
weed control and soil health." Of those operating a farm, 37 (92%) plan to use information
learned to develop or make changes to their farm's organic transition plan or current organic
production including: "cover crops, crop rotation, testing manure to be applied," "weed
control, N management," "info about crop rotation," and "flame weeding, shorter season
hybrids." Also, 63 (94%) attendees plan to share information learned with other individuals,
such as farmers, colleagues, and peers (N=63), including: "I'm a lender. We get phone calls.
Want to be more knowledgeable." "Organic seed production option to area landowners with
certified organic, irrigated land." 'Info on the licenses you need if getting manure from a
CAFO that is not yours."
Matched pre- and post-assessments for OATS respondents (n=17) showed increased
confidence of organic crop rotations (71% with positive change), organic weed control
strategies (88%), nutrient management in organic systems, (71%), organically approved pest
control strategies, (65%), and organic certification and inspection process (63%). Many (67%)
improved in knowledge about where to find information for questions about organic
production. Some 28% indicated a positive change in attitude toward organic production. All
respondents indicated plans to use information in their farm operation or agricultural
business/organization and provided these comments: "As a consultant I feel much improved
on organic production concepts and methods so as to discuss with clients." "I'm at the low end
of the learning curve – this has been incredibly beneficial."
Indiana Organic Grain Farmer Meeting provided farmers and agricultural professionals with
production, marketing, and certification information to improve management and increase

		acreage of organic field crops in Indiana. Summer Series provided farmers and agricultural professionals with production and marketing information and networking opportunities to improve management and increase acreage of organic grains in Indiana. OATS increased confidence of agronomists and crop advisers in providing advice to client questions on organic grain production and transition. The meeting, summer series and OATS are providing information and opportunities for building the structures of and support for organic farming production in Indiana.	
12.	Antimicrobial Resistance	Issue: Resistance of bacterial pathogens to antimicrobial therapies represents a critical concern in livestock production and human health. Foundational knowledge of disease ecology and mechanisms of antimicrobial resistance (AMR) remains limited. Methods to rapidly identify AMR pathogens are needed on the farm to mitigate disease outbreaks. The project goal is the establishment of a multi-disciplinary network of scientists to perform comprehensive and integrated risk-based research and outreach to improve safety of food from farm to fork. The project aims to understand prevalence and frequencies of pathogens and antimicrobial resistance within the environment, food products and food production processing, distributions and consumer systems. The project is unique for its comparative and comprehensive focus encompassing multiple pathogens linked to antimicrobial resistance (AMR), multiple animal species susceptible to AMR microorganisms and its integrative approach. Purdue University is investigating alternatives to feed antibiotics, including potential for bacteriophage additives or treatments that include a cocktail of phage types to control pathogenic bacteria including <i>Salmonella</i> and <i>E. coli</i> O157:H7 in both live animals and food matrices. Ongoing research is directly tied to strong Extension programming to facilitate rapid transfer of the findings into educational programming and application. Purdue University has launched an online course, <i>Diversity in Veterinary Medicine</i> , for students and faculty at veterinary colleges across the U.S. and to veterinarians in private practice. While the topic is different, this online course could be used to create courses to educate and certify people who work in food production on the important topic of AMR, combining data from studies such as selective dry cow therapy currently in progress at the University of Illinois and antimicrobial alternatives research at Purdue.	2.1 Food safety

	What has been done: (1) Determine the ecology and mechanisms involved in resistance and	
	transmission of AMR. (2) Create and deliver programs on antibiotic stewardship in food	
	production systems through education and outreach.	
	<u>Results:</u>	
	(1) Enhance surveillance and monitoring of antibiotic resistance and develop improved	
	diagnostic tests. In collaboration with Purdue engineers, veterinarians and animal diagnostic	
	lab, efforts are underway to develop a rapid diagnostic test to diagnose and recommend	
	treatment for bovine respiratory disease (BRD). Developed assays for the four most common	
	bovine respiratory disease (BRD) pathogens. Improve the agreement between BRD pathogen	
	resistance genotypes and phenotypes by identifying additional resistance marker genes.	
	Impact: Will provide veterinarians a rapid test to aid in the antibiotic prescription decision-	
	making process and will increase antibiotic stewardship and hopefully decrease resistance	
	2) Determine the ecology and mechanisms involved in resistance and transmission of	
	resistance.	
	Project 1: Environmental fate of antibiotic resistance genes in the bovine and swine	
	agroecosystems (* collaboration with Bo Norby). Sampled dairy and swine manure, stored	
	manure, as well as corn field prior to, and immediately, 3 weeks and 6 weeks after manure	
	application at the Purdue University farm. Established partnerships to sample farms in Finland,	
	Michigan, and New York. Used epicPCR, a molecular technique to link a taxonomic marker	
	(16S) and a resistance gene, to allow culture-independent identification of bacteria that	
	encode resistance genes. Impact: Improve understanding of the impact of soil manuring and	
	the environmental fate of antibiotic resistance genes	
	Project 2: Effect of carbadox and Zn Cu additives on antibiotic resistance gene profiles. Used a	
	highly parallel qPCR array (WaferGen) to determine the abundance of hundreds of antibiotic	
	resistance genes (ARGs) in feces from pigs fed Zn and Cu, Carbadox or no additive. Each	
	treatment resulted in unique ARG profiles and some enriched ARGs. Impact: Zn and Cu are	
	already available and used as antibiotic alternatives but may co-select for all the resistance	
	genes that prompted the Veterinary Feed Directive rules. We are investigating their impact on	
	the animal microbiome and resistome.	
	Project 3: Plasmid-mediated transfer of antibiotic resistance genes to Enterococcus faecalis	
	JH2-2 in poultry litter (* collaboration with Torey Looft). Enterococcus faecalis JH2-2 usually	
	acquires two resistance gene at a time. The same genetic element with the same resistance	
	genes were found with different flanking elements in different plasmids.	

		Impact: Quantifying and understanding the horizontal transfer of resistance plasmids will allow	
		us to judge the impact of animal management practices. This is also a novel method to study	
		the ecology of antibiotic resistance genes.	
		3) Develop and evaluate interventions (including alternatives to antibiotics) that reduce	
		antimicrobial resistance in food production systems. Determination of resistance gene profiles	
		when alternatives to antibiotics are included in animal diets. Swine experiments were	
		completed with treatment groups that received the normal diet amended with Zn and Cu,	
		beta glucan, wheat bran, glutamine, dextrin, and other complex oligosaccharides. High-	
		throughput qPCR arrays (WaferGen) were used to determine the resistance gene profile and	
		16S rRNA gene sequencing was also completed. Analysis is still underway. Impact: We are	
		testing marketed alternatives to antibiotics for their selective pressure for antibiotic resistance	
		genes. This will aid companies and producers to increase their antimicrobial stewardship.	
13.	Identification and	Issue: Foodborne pathogens cause significant economic losses across all levels of industry and	2.2 Food safety
	classification of	society, and many pathogens are deadly. Even pathogens that cause no significant stress to	
	foodborne	normal healthy individuals can result in death for individuals who are immunocompromised,	
	pathogens	very young, or elderly. Thus, maintaining the integrity of the food chain is a critical part of a	
		well-developed agricultural system. While there are many tools and technologies available for	
		testing foods, reagents, liquids, etc. for pathogens, many tests are time consuming and/or	
		expensive. Some can only be performed within high-technology environments, and some	
		cannot be adapted to all types of samples. One of the important goals of this application is to	
		design and implement test systems that are low cost and easy to perform, and therefore	
		provide a huge return on the investment to society at large. While the U.S. is a highly	
		technological society with tremendous infrastructure, many countries cannot afford current	
		technologies. The proposed technology will not be expensive to manufacture, and because it is	
		reagent-free, the cost of pathogen detection is significantly reduced. Therefore, as the	
		technology matures, low-cost versions may become available in resource-poor environments.	
		Target Audience: Farmers, food harvesters/processors, scientists, clinicians	
		What has been done: Microbial identification is essential in biosecurity, food safety, and the	
		clinical environment that would be relevant to this technology might be the monitoring and	
		preventing nosocomial infections. In general, three steps are needed to deliver correct	
		identification of a species: sample acquisition/preparation, microbe detection, and microbe	
		identification. Throughout the years, most effort in instrument development using optical	
		technology has been focused on the development of a colony counter, which is essentially a	

		simple detection device; further testing is required for identification of organisms however. To	
		identify and classify bacterial colonies, morphological methods, which observe the	
		morphological characteristics of the bacterial colony via visual inspection, are widely studied.	
		The objectives of this project are: 1. Provide low-cost, reagent-free pathogen-identification	
		technologies that enhance all aspects of food safety; 2. Provide a low-cost method for	
		monitoring microbial species in a variety of situations; and 3. Develop a series of software	
		suites that allow direct and rapid analysis of the results. This project will develop the	
		technology, expand the software for advanced classifications, and build a database of known	
		organisms that can be used to track and identify species from different locations.	
		Results: A key accomplishment in the present cycle was the submission of a new patent based	
		on developing an alternative approach to lateral flow assay development. This new technology	
		will be highly advantageous in the future for multiplexed assays. This patent is very important	
		for detection of toxins and pathogens via laser spectroscopy. The potential for this technology	
		is to be able to move detection out into the field, with hand-held instruments using low cost	
		tests.	
		Other Information:	
		http://www.cyto.purdue.edu/robinsonlab? ga=2.263103244.1448270229.1586177915-	
		<u>302381371.1559094136</u>	
14.	Increased	Issue: Home Food Preservation is a process that when done correctly can produce a bounty of	2.3 Food safety
	Knowledge of Safe	food. However, when home food preservation practices are not correct, undesired food safety	
	Home Food	issues can result leading to illness and possibly death. Many residents of Indiana preserve	
	Preservation	foods throughout the year. It is critical to food safety that those participating in home food	
	Practices in the	preservation use the most recent research-based home food preservation information.	
	North Central	Target Audience: Public interested in preserving food at home	
	Region	What Has Been Done: North Central Region (NCR) Extension educators worked together on a	
		food safety program to consumers across the region, including Indiana, Iowa, Kansas,	
		Michigan, Missouri, North Dakota, South Dakota, and Wisconsin. This NCR Food Safety team	
		developed and delivered food safety education and implemented evaluation tools and analysis	
		(by Wisconsin) based on home food preservation starting in 2017, then expanded to include	
		produce safety for food pantries in 2018. Food preservation topics included boiling water bath,	
		dehydration, fermentation, freezing, pickling, pressure canning, steam canning, and sweet	
		spreads. Programs were made available as lecture/demonstration, lecture/hands-on, and via a	
1		series or an all-in-one session.	

		Results: For results of the NCR, in 2017, a total of 1,620 participants enrolled in home food	
		preservation classes. Almost all (96%) of workshop participants reported that they learned	
		information in the program that was new to them. A subset of participants (n=201) responded	
		to a 3-to 6-month post-workshop follow-up online evaluation. Most (67%) had changed their	
		food preservation practices, 93.5% indicated they always practice safe home food preservation	
		practices, 94.5% had shared Extension resources with others, and 96% indicated greater	
		confidence in their ability to preserve food safely as a result of Extension home food	
		preservation training. From 2017-2018, a total of 3,381 NCR participants completed a revised,	
		common end-of-session evaluation. Almost all (99%) workshop participants would recommend	
		the educational program to others. As a result of participation, nearly 80% planned to use the	
		resources provided, 74% planned to preserve food more often at home, 66% planned to share	
		what they learned with other people, and 59% planned to check if the food preservation	
		resources they used at home were up-to-date.	
		For Indiana, in 2019, 67 participants completed Home Food Preservation evaluations, 28% of	
		those who completed training. Some 36% had been preserving food at home less than one	
		year, and 31% had been for over 10 years. As a result of the workshops, ratings for	
		confident/very confident increased, including: knowing where to go for safe, research tested	
		recipes for preserving food at home (before, 29 (43%), after 65 (99%), ability to follow safe	
		home food preservation practices (before, 32 (48%), after 61 (93%), and knowledge of safe	
		home food preservation practices (before 15 (22%), after 58 (88%). All participants would	
		recommend this program to others. Participants reported they were going to: use the food	
		preservation resources provided (88%), follow the directions provided by Extension and USDA	
		(85%), and preserve food more often at home (84%). Afterward, participants reported the	
		workshops were "very informative", and they were "going to try new recipes/canning	
		methods." As a result of Home Food Preservation workshops, participants who gained	
		knowledge and skills to preserve food will help contribute to food safety for residents of	
		Indiana, and the states of the North Central Region.	
		Other Information: https://www.ag.ndsu.edu/ncrfoodsafety	
15.	Produce Safety	Issue: The Food Safety Modernization Act was signed into law in 2011. One of seven	2.4 Food safety
	Training Helps	regulations from the Act, the Produce Safety Rule, became law in 2016, marking the first time	
	Growers Comply	the produce industry was exposed to industry-wide regulation. Among other things, the rule	
	with Regulations	mandated that one person from each covered produce farm must receive food safety training	
		using an FDA-approved curriculum. The Produce Safety Alliance (PSA) curriculum is currently	

the only curriculum that is currently FDA-approved. Classes may only be delivered by trainers	
and lead trainers certified by the PSA.	
Target Audience: Produce growers and workers	
What Has Been Done: Purdue Extension began preparing for these new regulations in 2014,	
when funding was secured to train educators in the FDA-recognized curriculum. Approval of	
the Produce Safety Alliance curriculum by FDA took an extended length of time, causing a	
delay in the delivery of training. Purdue Extension pursued certified lead trainer status and the	
team currently consists of eight trainers, three of whom have lead trainer status allowing them	
to conduct trainings throughout the U.S. Purdue Extension has also partnered with trainers	
from the National Farmers Union (Indiana chapter) to expand the number of trainers available	
for offering classes. Partnerships with the Indiana State Department of Health and Indiana	
State Department of Agriculture have resulted in the Safe Produce Indiana collaboration under	
which all trainings are offered.	
Results: The Produce Safety Alliance (PSA) curriculum was made available nationally in the Fall	
2016. Since then, Purdue Extension has offered statewide trainings. During 2016 –2017, nine	
8-hour workshops we conducted, and 142 vegetable growers obtained training certificates,	
making them compliant with training requirements of the Produce Safety Rule. During 2017-	
2018, 13 more trainings were conducted, and 114 individuals received their certificates. In	
2018-2019, 15 trainings were conducted, and 195 individuals receiving certificates. The three-	
year totals are 37 events, reaching 451 participants. Based on the list of attendees, it is	
estimated that within the first year, at least 50% of the produce acreage in Indiana was	
impacted by this safety training. For cantaloupe, it is estimated that this training has affected	
at least 90% of total acreage in Indiana. One-year follow up surveys from participants of the	
2017-2018 programs indicated that 100% had made some sort of change to their farm to	
improve food safety practices since attending the training. Some 50% added or modified on-	
farm infrastructure or equipment to improve food safety practices, including changes to	
packing areas, addition of hand washing stations, and switching to hard plastic harvest	
containers. Indiana has offered more trainings to growers than many states in the North	
Central Region and has conducted more trainings than several larger vegetable-producing	
states such as Texas, Georgia, North Carolina, South Carolina, and Arizona. These trainings	
contribute to regulation compliance and safer production for Indiana produce growers.	
Other Information: https://ag.purdue.edu/extension/safeproduce/Pages/default.aspx	

16.	Interactions of diet,	Issue: "Good medicine tastes bitter" is a saying that dates perhaps all the way to Confucius.	3.1 Childhood
	flavor, and saliva for	The idea is that things that are good for your health are unpleasant to consume. This	Obesity
	eating healthy	phenomenon is more than psychology, as many of the chemical compounds in drugs and	
	foods	foods that are "good for you" have unpleasant flavors. The same properties that make	
		chemicals unpleasant are also the properties that may drive the contributions to health. In	
		foods, many bitter compounds in vegetables are the exact same chemical compounds that	
		could fight cancer, reduce risk of diabetes, or protect against obesity. The result is a	
		fundamental problem for human nutrition: foods we should eat are the same foods our	
		mouths tell us are unacceptable.	
		Target Audience: Researchers in food, nutrition, weight management	
		What Has Been Done:	
		The research goal is to find ways to improve healthy food flavor through modification of saliva.	
		Preliminary data indicate saliva influences flavor perception for specific, potentially healthy	
		food compounds (unsaturated fat, spicy compounds, polyphenols), and may be useful for	
		making unpleasant sensations less intense. Research objectives were: 1) Determine salivary	
		protein changes before and after adding target flavor compounds (unsaturated fat, spicy	
		compounds, polyphenols) to the diet, and whether flavor perception is altered by changes in	
		salivary proteins, and 2) Determine changes in salivary proteins during dietary interventions	
		(e.g., low sodium diets, non-nutritive sweetener diets). Polyphenols are reducing agents that,	
		together with antioxidants (Vitamins C and E, and carotenoids), protect the body from cancers,	
		coronary heart disease and inflammation. Experiments were conducted with human subjects	
		(healthy adults, age 18-45, with no food allergies) who tasted beverages containing bloactive	
		flavors (unsaturated fat, spicy compounds, bitter polypnenois), food-based flavors, and no	
		flavors. Participants provided baseline saliva (spit into collection tube) and stimulated saliva	
		(cnew on wax and splt into collection tube). Then, they tasted three beverages and splt again.	
		Researchers analyzed the expectorate and identified: 1) high and low sensitivity to the flavor	
		of interest, and 2) high and low expression of the salivary protein of interest. Next, a 6-week	
		dietary intervention was completed with participants from identified groups (nigh/low havor	
		sensitivity, mgn/low expression of salivary proteins). Participants drank a different set of three	
		12-ounce beverages each week, then sailva and sensory fatilitys were collected. Sallva samples	
		spectrometry	
		Specificity.	
		<u>Results:</u>	

		Successful completion of one study demonstrated exposure to polyphenols (the bitter stuff in	
		cocoa products) in a chocolate milk mixture caused saliva to change, which could potentially	
		reduce the bitterness intensity of chocolate. A second study looked at bitter compounds from	
		green tea and whether those also alter saliva and change the bitterness intensity that people	
		experience. This work, initially, confirms that saliva adapts to diet to reduce the bitterness of	
		certain foods. Knowing that diet changes saliva in ways that influence the flavor of that diet is	
		critical. Not just to better understand why people find certain foods bitter and palatable and	
		others do not, but to help with the messages. Changing to a healthier diet is hard, especially if	
		people don't like the flavor of the healthy diet (often associated with bitter flavors). Results	
		will help those trying to switch to a healthier diet, to stick with it and the body will adapt to	
		like the flavors better. Compiling a database will help uncover relationships between dietary	
		behaviors and salivary proteins. Once patterns between saliva and diet are defined, then	
		salivary profiles could be useful in further research to verify diet records or dietary compliance	
		in the field of nutrition. Research is identifying human salivary proteins modifiable by diet	
		which can ultimately impact diets of healthy foods for weight management and disease	
		prevention.	
17.	Enhancing the	Issue: In Indiana, community leaders make decisions about public spaces such as parks, trails,	3.2 Childhood
	Value of Public	farmers markets, schools, and Main Streets every day that affect the health and wellness of	Obesity
	Spaces: Creating	the community. Many communities face significant challenges to quality of life and economic	
	Healthy	development, indicated by low state rankings for health outcomes and poverty rates.	
	Communities	Target Audience: Decision-makers and local leaders with oversight and management of	
		community public spaces, including parks boards, plan commission, public officials and staff,	
		members of organizations whose missions relate to services, programs, or management of	
		public spaces.	
		What Has Been Done: Enhancing the Value of Public Spaces: Creating Healthy Communities	
		(CHC) was developed for Indiana communities by a comprehensive, multidisciplinary team of	
		Purdue Extension professionals from Health and Human Sciences, Nutrition Education	
		Program, Community Development, Agriculture and Natural Resources, and Illinois-Indiana	
		Sea Grant. This team created a curriculum, marketing flyers, promotional videos, and a series	
		of instructional videos for use in a flipped classroom training. CHC combines data collection	
		and analysis with inclusive public deliberation to design high-quality action plans toward	
		meaningful, sustainable improvements for public spaces focused on community health	
		through: community design coupled with information resources, case studies, and strategies	

to enhance food access and active living via community-based programs and improvements to	
public spaces. The goal is to strategically guide policy, systems, and environmental changes	
relevant to how high-value public spaces promote health. Communities prepared with a public	
spaces action plan, can boost economic development, improve quality of life, and create a	
healthier place for individuals and families. A community-based Purdue Extension team	
coached community groups through developing action plans for public spaces, which guided	
decisions and positioned communities to take advantage of opportunities to promote healthy	
eating and active living.	
Results: Gaston, in Delaware County, developed a public spaces action plan for a new	
community center, trails, and community wellness activities. Terre Haute, in Vigo County,	
completed an updated Parks and Recreation master plan. Connersville, in Fayette County,	
focused on integrating health and wellness into community initiatives, including downtown	
public space revitalization, to update the city's comprehensive plan. On a post-survey,	
completed by 21 Terre Haute participants, they felt CHC met/exceed expectations for:	
presentation of information, facilitation of activities and encouragement of discussion (100%),	
opportunities for learning about public spaces (95%), and building connections to resources	
(86%). All participants reported CHC was useful in providing new knowledge to help make	
decisions, and to take actions to develop new or enhance existing public spaces. Significant	
takeaways: "Becoming more involved in issues relating to our community." "Let others know	
the issues and how public spaces affect our overall health." "The importance of public spaces	
to public health outcomes." "How to narrow consensus and invite opinion." "Health of the	
community and its connection to public space." "Working with youth to use parks as a tool for	
healthy living." "Stats on Terre Haute as healthy community; Better knowledge of community	
assets." "It was a great way to identify resources, gather ideas and garner support for	
programs. I will try this facilitation style in my current job." Some 45 Gaston and Connersville	
participants indicated: they felt engaged in activities (95%), they felt the discussion was	
meaningful (93%), they found the workshop to be informational (91%), and their knowledge	
about how to create healthy communities had increased (80%). Respondents were likely to	
use information from CHC for future public spaces planning (89%). Participants shared what	
they will apply in their community: "Work with others to achieve goals." "It takes a whole	
community to move forward." "Collaboration is necessary for community building." "We have	
the ability to leverage what we already have to make a difference." "We must learn to do	
more to promote and encourage healthy living."	

For Fayette County and Connersville, their two-year process engaged over 64 community	
members and representatives from key agencies and stakeholder organizations generating	
482 volunteer hours for community work, totaling \$11,631. A kick-off meeting with	
community leaders from Community Voices, the Fayette County Area Plan Commission,	
Discover Connersville, Connersville city government, and the Fayette County Community	
Foundation started a series of community workshops focused on Quality of Life, Parks and	
Recreation, Institutional Assets, and Transportation. After action-planning meetings, nine	
Fayette County participants responded: all agreed that CHC fostered a collaborative	
environment for community decision-making, meetings were well organized, and the group	
had chosen to work on important problems. Some 89% agreed action plan objectives had/will	
have a positive effect on the community, and planning meetings had been useful. Many (89%)	
reported they enjoyed attending these meetings, and 55% agreed they were confident this	
group would be able to accomplish goals set. For next steps, participants stated: "The	
committee is looking for ways to fund some of the projects they have in mind. They are	
seeking more volunteers to assist." "Fayette County Community Voices as well as Discover	
Connersville have benefited from this program as well. Collaboration in looking for recipients	
and vendors has worked well for all concerned." "Funding ideas have developed from this	
program as well." A class of Purdue University Landscape Architecture students, led by Dr.	
Aaron Thompson, were meeting with the community in a parallel process to develop a plan to	
use vacant land in downtown Connersville as green space. Purdue Extension guided the	
community to deliver a report with updated data, objectives, strategies, and community input	
for its comprehensive plan, and presented to the Fayette County Community Foundation in	
December 2019. Meetings with the Purdue students culminated in Fayette County participants	
traveling to Purdue's West Lafayette campus to attend student presentations of	
renderings/concepts for downtown Connersville. Due to these student efforts, the	
Connersville Mayor, who participated in this project, authorized \$100,000 for purchase of land	
in downtown Connersville, implementing several suggestions about green space and	
community gardens developed during CHC. Currently the land serves as a community garden	
known as "the Oasis." One participant commented, "We got some great ideas from Purdue	
studentsWe can take some pieces from different designs and incorporate them into the lot	
and make it more visually appealing and more suitable for outdoor activities, not just for	
growing produce. We want it to be a green space people can use."	

		Through Purdue Extension's CHC three communities are working to develop high-quality	
		public spaces action plans to boost economic development, improve quality of the	
		environment, and create a healthier place (including making space for and supporting physical	
		activity and healthy eating to reduce obesity) for individuals and families.	
		Other Information: https://cdext.purdue.edu/signature-programs/quality-places/evps-	
		<u>health/.</u>	
18.	Global Change and	Issue. Since the 2007/2008 commodity crisis, there has been a resurgence of interest in	4.1 Climate change
	the Challenges of	sustainability of the world's food system and its contributions to feeding the world's	
	Sustainably Feeding	population and to ensure environmental sustainability of the planet. Elements of this grand	
	a Growing Planet	challenge are by now quite familiar. The number of people the world must feed is expected to	
		increase by another 2 billion by 2050. When coupled with significant nutritional improvements	
		for 2.1 billion people currently living on less than \$2/day, this translates into a very substantial	
		rise in demand for agricultural production. FAO estimates increased demand at 70% of current	
		production, with nearly 100% in developing countries. Over the past century, global	
		agriculture managed to offer a growing population an improved diet, primarily by increasing	
		productivity on existing cropland. Signs of slowing yield growth for key staple crops and public	
		opposition to genetically modified crops has slowed growth in application of promising	
		biotechnology developments to food production in some parts of the world. Growing use of	
		biomass for energy generation has introduced an important new source of industrial demand	
		in agricultural markets. Water, a key input into agricultural production, is rapidly diminishing in	
		availability in many parts of the world, and many soils are degrading. Agriculture and forestry	
		are increasingly envisioned as key sectors for climate change mitigation policy. Farming and	
		land use change, induced by agriculture, account for about one-third of global greenhouse gas	
		emissions, but if incorporated into a global climate policy, these sectors could contribute up to	
		half of all mitigation in the near term, at modest carbon prices. Any serious attempt to curtail	
		these emissions will involve changes in the way farming is conducted and placing limits on	
		expansion of farming; this is particularly true in the tropics, where most agricultural land	
		conversion has come at the expense of forests, either directly or indirectly via a cascading of	
		land use requirements with crops moving into pasture and pasture into forest. Limiting	
		conversion of forests to agricultural lands is also critical to preserving the planet's biodiversity.	
		These factors restrict potential for agricultural expansion in the wake of growing global	
		demands. Finally, agriculture and forestry are likely to be economic sectors whose productivity	
		is most sharply affected by climate change. This will shift the pattern of global comparative	

	advantage in agriculture and may well reduce productivity of farming in precisely those	
	regions of the world where poverty and malnutrition are most prevalent, while increasing yield	
	variability and the vulnerability of the world's poor.	
	Target Audience: Public, scientists	
	What has been done:	
	The broad objective of this project is to improve our understanding of the interplay between	
	population and income growth, biofuels policy and production, international trade, climate	
	impacts and climate policy in determining future food security, land use change and	
	greenhouse gas (GHG) emissions at global and regional scales. Land-based GHG emissions	
	account for about one-third of total GHG emissions and could offer up to 50% of efficient	
	abatement potential at modest carbon prices. Yet current predictions of land use change and	
	GHG emissions over the coming century are highly uncertain and often ignore the dynamic	
	interplay between these forces as high priority. To improve on current state of knowledge and	
	policies, project objectives are: (1) Understand and quantify the drivers of global changes in	
	land use and GHG emissions, project such changes forward to 2050 or 2100 and formulate	
	optimal policy responses to such changes, (2) Evaluate the impact of uncertainty in climate	
	impacts, climate change mitigation policies and energy prices on both optimal and observed	
	land use change at global scale over the long run, (3) Assess the impact of future water	
	shortages on global food production, trade and land use, and (4) Assess the impacts of these	
	global changes on world food prices, food security, livelihoods and poverty in developing	
	countries.	
	Results: Upon removing the spatial variation in climate impacts on global agriculture, the	
	terms of trade impacts (changing export prices, relative to import prices) are cut in half. Given	
	inherent heterogeneity of climate impacts in agriculture, this points to the important role of	
	trade in distributing associated welfare impacts. When biophysical impacts of climate change	
	on crop production are allowed to vary across empirically estimated uncertainty range taken	
	from the meta-analysis the welfare consequences are highly asymmetric, with much larger	
	losses at the low end of the yield distribution. This interaction between magnitude and	
	heterogeneity of biophysical climate shocks and their welfare effects highlight the need for	
	detailed representation in projecting climate change impacts. Impact of policies aimed at	
	curbing greenhouse gas emissions from conversion of tropical forests to palm oil production in	
	Malaysia and Indonesia was evaluated. Rapid expansion of oil palm in Malaysia and Indonesia	
	(M&I) has contributed to record levels of deforestation, carbon emissions, and biodiversity	

		loss. Sustainability certification schemes seeking to address this have fallen short of stated	
		goals, leading to calls for more aggressive measures. Three alternative conservation policies	
		within a global economic framework were evaluated; market mediated responses were found	
		to confound efficacy and distributional impacts of these policies. Simply limiting palm oil	
		production or consumption is unlikely to halt deforestation in M&I in the absence of active	
		forest conservation incentives. M&I would benefit economically by taking domestic action	
		rather than waiting for others to act.	
19.	Spatial linkages of	Issue. Water, its availability and our access to it, is essential to health of many ecosystems.	5.1 Natural
	soil and water	Access to water is complicated by pressures and needs of communities and environmental	resources and the
	resources for	factors including rainfall, severe weather, and increasing climate variability that reduces our	environment
	sustainable	ability to accurately plan for future water needs. Many communities react to current situations	
	agronomic	rather than plan proactively for future water needs. Drastic impact of insufficient planning and	
	production in	lack of scientifically based policies has led to problems including rapidly declining groundwater	
	Indiana	supplies, land-degrading overuse of irrigation for high-value specialty crops, and water	
		shortages in areas of unplanned and rapid urban growth. Such problems have been avoided in	
		much of the Midwestern Corn Belt as irrigation use has been limited to high-value specialty	
		crops and seed production. As corn and other grain prices increase, farmers are increasingly	
		turning to irrigation to hedge risk of climate-related losses in productivity. Soil water is critical	
		in the decision to irrigate. Thus, understanding relationships between soils and water-holding	
		capacity will be imperative in context of a changing climate and irrigation demand. Soils and	
		their ability to store and deliver water vary across landscapes. Many areas of the Midwest	
		depend on access to underground water reserves for agricultural production, but few	
		proactive, reasonable and scientifically ground water management policies have been	
		effectively enacted. This is a classic example of interdisciplinary problem: future water needs	
		for agriculture are determined by crop modelers, while soil scientists evaluate differences in	
		water holding capacity. Aquifer studies that characterize extent and conductivity of	
		groundwater formations are conducted by hydrogeologists who develop "typical" cross-	
		sections of regional geology, while surface water managers are trained to think at watershed	
		scales defined by topographic boundaries, which may not match boundaries of underlying	
		aquifers, especially confined aquifers that serve as water supplies in much of the country. This	
		illustrates how integrated water management is also a scaling problem. Datasets needed to	
		support integrated water management activities are not available in a form that can be easily	
		integrated into simulation models. Traditional soil surveys are based on taxonomic and	

	morphologic variability and often multiple map units have similar water storage properties.	
	Through the efforts of the U.S. Geological Survey (USGS) and others, there are huge quantities	
	of data detailing the subsurface characterization of hundreds of aquifers, or water yielding	
	geologic formations across the U.S., but large portions of this data do not exist in	
	geodatabases that can readily be adapted to regional scale analysis, or they are available as	
	data layers for individual states and are truncated at political boundaries that do not represent	
	aquifer boundaries. The seamless datasets proposed will enhance the usability of the wealth	
	of data already compiled, which reside in archived reports or difficult-to-find in-state archives.	
	By making a spatially explicit and continuous raster-based product, land managers and	
	producers can gain a gain a greater understanding of water management.	
	Target Audience: Farmers, land managers, public, scientists	
	What has been done: The long-term goal of this project is to quantify the water storage	
	capacity in the soils and aquifers of Indiana and how future changes in the quantity and timing	
	of water supply and water demand will affect agronomic production. Specific research projects	
	will focus on the development of spatial and temporal databases, field studies, remote sensing	
	observations and hydrologic and crop simulation modeling at multiple scales to predict the	
	sustainability of agronomic production in the state. The broad objectives to be addressed by	
	this project include: 1. Quantify the subsurface water storage capacity in Indiana both in soils	
	and in groundwater aquifers; 2. Evaluate agricultural water use in Indiana in relationship to	
	climatic extremes and projections of future climate change and water demand; and 3.	
	Integrate findings into on-line spatial databases for use in research, Extension and teaching.	
	Results: Objective 1: Parameterization of surface storage parameters for the Buffalo River and	
	Red Rivers has been completed using a novel method integrating observations of inundation	
	area from MODIS and daily streamflow immediately following periods of observed inundation	
	to estimate volume. Code to create lake and wetland parameter files using this method are in	
	the final stage of development and simulation testing will continue into 2020. Compilation of a	
	database of soil, vegetation, wetlands and open water, and forcing data to start running model	
	simulations at a spatial resolution of 1 /16th for the U.S. is nearing completion with	
	preliminary testing completed in Indiana. Work is currently underway to develop a version of	
	the VIC model incorporating all Purdue-based code updates, including groundwater,	
	agricultural drainage, and surface inundation. Testing of the merged code is expected to begin	
	in the immediate future.	

		Objective 2: The VIC-CropSyst model, a coupling of the VIC land surface model with the	
		CropSyst crop production model, has been applied to all of Indiana as part of the Indiana	
		Climate Change Impact Assessment (INCCIA), a project involving researchers and stakeholders	
		from across the state to develop a statewide impacts assessment on major sectors including	
		water resources (PI Cherkauer, lead author), and agriculture (Co-PI Bowling, lead author). The	
		VIC-CropSyst simulations have so far been focused on the simulation of major crops, including	
		corn, soybean and winter wheat using the methods developed for the calibration of hydrology	
		and crop yields for SWAT simulations. The VIC-CropSyst model has been updated to include	
		process representations developed at Purdue for subsurface drainage and urban areas. VIC-	
		CropSyst code is significantly different from the stand-alone VIC model code so integration is	
		independent of Objective 1, though changes and bug fixes are being completed in the merged	
		VIC-CropSyst version of the code. Once integration and testing has been completed, VIC-	
		CropSyst will be applied over a large portion of the Midwest to evaluate climate impacts on	
		crop yields and water use. Over the summer of 2019, field experiments were also conducted	
		to quantify variations in biomass and yield development by water availability. Measurements	
		included high-resolution remote sensing from UAS as well as physical sampling of	
		experimental plots during the growing season. This was a particularly difficult year with	
		exceptionally wet spring conditions resulting in late planting, near-drought summer	
		conditions, and harvesting that has continued into December for some plots. This data will be	
		used to parameterize the VIC-CropSyst model in 2020 to improve the representation of crop	
		growth under conditions of water stress.	
		Objective 3: Final Dominant Soil Parent Materials (DSPM) maps were published to Soil Explorer	
		for Iowa and Michigan, and a draft DSPM map was published for Arkansas. Existing draft DSPM	
		maps for North Dakota, South Dakota, Nebraska, Kansas, Minnesota, and Missouri are in	
		various stages of review and revision. A new Soil Explorer app for the Android operating	
		system was published to Google Play in May 2019. Soil Orders, Soil Moisture Regimes, and	
		Pedogenic Features maps for the Arequipa Region of Peru were published to Soil Explorer in	
		May 2019 and feature descriptive text in both English and Spanish.	
20.	Beneficial Reuse of	Issue: Beneficial use of biosolids to enhance soil quality and soil fertility is constantly	5.2 Natural
	Residuals and	challenged by concerns of chemical constituents with potential to remain after wastewater	resources and the
	Reclaimed Water:	treatment processes. While several rules have been put in place to reduce concerning metal	environment
	Impact on Soil	and associated constituents in biosolids, growing awareness of the presence of trace organic	
		chemicals (TOrCs) in municipal biosolids has garnered much attention from the public and	

Ecosystem and	regulatory community. Sound science is needed to properly evaluate risks to the ecosystem	
Human Health	and human health so biosolids may continue to serve a beneficial purpose rather than be	
	destined for landfills. Ability to assess such risks is often hindered by: (1) lack of data typically	
	used for evaluating risk or (2) inappropriate use of typically used data because the behavior of	
	many TOrCs do not follow previously used paradigms for predicting risk. Behavior of ionizable	
	compounds is pH dependent, and for those that exist as cations in the environment (e.g.,	
	azithromycin and ciprofloxacin), octanol-water partition coefficient (Kow) and associated	
	organic-carbon normalized sorption coefficient (Koc) are not appropriate for predicting	
	behavior in soil and water. Primary goal of research is to optimize use of municipal biosolid for	
	land reclamation and provide needed environmental fate data (leaching, persistence, and	
	plant uptake) on trace organics present in municipal biosolids towards enhancing risk	
	assessment protective of human and environmental health.	
	Target Audience: Public, scientists, public and environmental health specialists, regulators	
	What has been done: (1) Evaluate short- and long-term chemistry and bioavailability of	
	nutrients, potentially toxic inorganic trace elements, and pharmaceuticals and personal care	
	products (TOrCs) in residuals, reclaimed water, and amended soils in order to assess	
	environmental and health risk-based effects of application at a watershed scale. Specific tasks:	
	1.1 To develop and evaluate <i>in vitro</i> (including chemical speciation) and novel <i>in vivo</i> methods	
	to correlate human and ecological health responses with risk-based bioavailability of trace	
	elements and TOrCs in residuals and residual-treated soils. 1.2 Predict long-term bioavailability	
	and toxicity of trace elements and TOrCs in residual-amended urban, agricultural and	
	contaminated soils. 1.3 Evaluate long-term effects of residuals application and recialmed	
	wastewater irrigation on rate and transport of nutrients, trace elements, IOrCs, and	
	emergence/spread of antibiotic resistance in high application rate systems. 1.4 Evaluate plant	
	uptake and ecological effects of potentially toxic trace elements and forcs from soils	
	amended with residuals and reciained wastewater. (2) Evaluate uses and agronomic and	
	Evaluate the ability of in city treatment of contaminated coil with residuals to reduce chemical	
	contaminant bioavailability and toxicity 2.2 Determine the climate change impacts of organic	
	residuals and use ontions (i.e., C sequestration, NoO emissions), 2.3 Quantify sustainability	
	impacts such as water quality (reduced N impairment) and quantity hopofits (increased plant	
	available water increased drought tolerance) and soil quality improvements associated with a	
	range of organic residuals and uses 2.4 Explore the notantial for waste hy-products to be used	
	I range of organic residuals end uses. 2.4 Explore the potential for waste by-products to be used	

in urban areas including urban agriculture, stormwater infrastructure, green roofs, and in	
urban green space. 2.5 Evaluate ecosystem services of degraded urban soils amended with	
residuals. 2.6 Use tools such as life cycle assessment to understand and compare the impacts	
of a range of residuals end use/disposal options.	
Results: Impact 1: The quantitative data of trace organic chemicals (TOrCs) biosolids and	
composted city wastes, which include yard trimmings and food packaging and other paper	
wastes among other compostable materials and used in both agricultural and urban settings,	
are helpful in ecological risk assessments. Currently, the TOrC concentrations of greatest	
concern are a perfluoroalkyl substances (PFASs), particularly the perfluoroalkyl acids (PFAAs),	
which cannot be degraded biologically, are mobile, and for which minimum allowable	
concentrations in water are in the low parts per trillion (ppt). PFAAs were detected in all	
composts and biosolid-based fertilizers. PFAAs quantified included perfluorinated carbon chain	
lengths of C4 to C18 carboxylates and C4 to C8 sulfonates. Total PFAAs in the < 2 mm fraction	
ranged from a few ng/g in yard wastes (considered background levels) to over detection limits	
to ~70 ng/g dry weight (ppb) for composted city wastes from 2016 and ~190 ng/g dry weight	
for biosolid-based fertilizers from 2014. The shorter chain PFAAs (≤ C6) dominated although	
perfluorooctane sulfonate (PFOS) was also consistently present. Analysis of more recent	
biosolid-based fertilizers reflected a substantial decrease in total PFAAs as well as additional	
decreases in the longer chain compounds (>C6) that have been phased out in most	
applications. Increasingly lower allowable concentrations of PFAAs in groundwater and surface	
water by some states is increasing concerns regarding the contribution of land-applied	
biosolids to PFAA contamination of groundwater. However, in most cases, the PFAA loads in	
biosolid-based products and composts are relatively low compared to other exposure routes	
except when industrial inputs have resulted in elevated PFAA loads in biosolids. Impact 2:	
Release and degradation of trace organics from biosolids appears to be slower than when an	
organic chemical is artificially spiked into a soil. These results suggest that although trace	
organics resident in biosolids may be more persistent (longer half-life), release concentrations	
of trace organics from biosolids and subsequent leaching to groundwater or plant uptake will	
be less than predicted from soils where contaminants are artificially added. Support of Impacts	
1 & 2: For the waste-based soil amendments and fertilizers for which we had characterized	
PFAA levels and subsequent PFAA concentrations in porewater in earlier years, we identified	
PFAA precursors through a targeted screening of 30 known PFAA precursors. Several PFAA	
precursors were identified. The team completed greenhouse studies evaluating uptake of both	

		PFAAs and a subset of other trace organics by kale, turnips and radishes in miracle grow	
		supplemented with a 2016 biosolid-based fertilizer product at 0, 1 and 4 times the	
		recommended rate. Long-chain PFAAs remained primarily in the growing media with some on	
		the roots and the root vegetable peels. Some shorter chain PFAAs were detected in kale	
		leaves. PFAAs in root vegetables and in leaves increased with increased application rates. Most	
		of the PFAAs remained in the growing media and not associated with the plant. The trace	
		organics other than PEAAs that was targeted included azithromycin (antibiotic).	
		carbamazepine (anticonvulsant), miconazole (antifungal), triclocarban and triclosan	
		(antimicrobials) had mixed uptake patterns but overall uptake was low. Carbamazepine.	
		miconazole, triclocarban, and triclosan present in biosolids amended to soils all exemplified	
		slower degradation and release rates than observed in soils for which a chemical was added to	
		the soil directly.	
21.	Quantification of	Issue: The overall aim of this multistate project is to develop tools and techniques that can be	5.3 Natural
	best management	used to accurately predict Best Management Practice (BMP) performance effectiveness across	resources and the
	practice	a range of spatial scales. Achieving this aim will permit more informed and cost-effective	environment
	effectiveness for	watershed management decision making. A multistate effort is required because of the	
	water quality	plethora of BMPs to be investigated and because of site-specific nature of selected land uses	
	protection at the	and associated BMPs. Successfully completion of this project will reduce uncertainty and costs	
	watershed scale	associated with BMP implementation efforts and improve local, regional, and national water	
		quality. Monitoring of BMP effectiveness at the subwatershed scale is needed to gain insights	
		into nutrient and pollutant transformation rates and impacts of export to downstream	
		receiving waters. To scale these findings and simulate functions, sub and watershed scale	
		water quality monitoring will be combined with distributed hydrological water quality	
		modeling. Models developed through this work should be spatially distributed to capture	
		impacts of individual BMPs and physically based to simulate pollutant fate and transport	
		processes. Ideally, these models should be tested against both distributed and watershed scale	
		(stream) observations. These will be used to predict effectiveness of BMPs and BMP	
		implementation at the farm, subwatershed and watershed scales, improve and assess ability	
		of watershed management models to address emerging environmental issues.	
		Target Audience: Land managers, public, scientists	
		What has been done: (1) Monitor water quality from a variety of watersheds with a range of	
		conditions (e.g., differing land use and associated implemented BMPs, varying	
		geographic/geologic conditions), (2) Develop and evaluate models for predicting BMP	

	performance and water quality at the field and watershed-scales when considering climate	
	change.	
	Results: Effectiveness and societal acceptance of best management practices (BMPs) across	
	the rural-urban gradient. Project goals are to: (1) characterize current pollutant loads from two	
	representative watersheds draining to Lake Michigan based on resident group (i.e., urban	
	residential, suburban residential, rural residential, small agricultural, and medium/large	
	agricultural), (2) determine willingness of resident groups to adopt conservation and	
	management practices, and (3) aggregate potential pollutant reductions based on willingness	
	scenarios and share results with stakeholders. Model results demonstrated that agricultural	
	land is the primary developed land use in both watersheds with corresponding annual loads of	
	nutrients. Sediment loads were attributed to streambank erosion and allocation to land use	
	was dependent upon number of stream miles within each land use. The team conducted a	
	mailed survey to explore residents' awareness of and attitudes towards water quality	
	improvement practices, their likelihood of adopting these practices, and factors that influence	
	their likelihood of adoption. Respondents valued improved environmental quality and reduced	
	flash flood risk as benefits of adopting water quality improvement practices and identified not	
	knowing enough about specific conservation practices and concerns about how to install and	
	maintain practices as main barriers to adoption. Survey results were integrated into modeling	
	efforts to illustrate trajectory of knowledge of practice to implementation. For rain barrels,	
	there is high adoption and knowledge, but this is with limited impact on water quality	
	outcomes because it collects only a small fraction of potential runoff. With cover crops there is	
	higher knowledge but likelihood of adoption is much smaller, suggesting that other hurdles	
	exist to implementation. Assessment of ecosystem services of urban rain gardens:	
	Urbanization impairs water quality and ecological health of streams and rivers by intensifying	
	hydrology and mobilizing pollutants within watershed. Stormwater control measures (SCMs)	
	disconnect impervious surfaces from receiving waters reducing flood impacts and increasing	
	pollutant removal, both are critical regulating ecosystem services. SCMs can also provide	
	supporting and cultural services such as habitat, aesthetics, and sense of community. The	
	team conducted a multi-city comparison of ecosystem services provided by SCMs in Charlotte,	
	NC, a large metropolitan region with a progressive stormwater utility and West Lafayette, IN, a	
	small city with a developing stormwater utility and active community-based watershed	
	stewardship. For this project, the focus was on rain gardens as they are commonly used,	
	ecologically based and scalable; they have potential to provide multiple ecosystem services	

	throughout urban landscape. To assess regulating and supporting services, water quality was	
	measured for runoff and soil water via lysimeters in three rain gardens in each city from	
	January 2017 through May 2018. The team measured soil properties, denitrification via	
	enzyme assays seasonally, and plant biodiversity (species richness, abundance) during peak	
	flowering in the summer. Cultural services were characterized by spatial distribution of	
	socioeconomic factors (e.g. income, education, home prices) around each rain garden. All sites	
	were on public lands (schools, parks) in neighborhoods with varying socioeconomic factors,	
	which influenced levels of maintenance, weed removal and mulch application. Elevated	
	concentrations of NO ₃ , PO ₄ and dissolved organic carbon were observed in shallow soil water,	
	attributed to active mineralization of organic matter and development of anoxic conditions	
	during flooding. Highest denitrification rates in rain gardens were observed with greatest plant	
	density and NO ₃ concentrations. Ecological functions are currently being combined with social	
	factors to classify and quantify multiple ecosystem services and understand the role of	
	community stewardship in delivering ecosystem services in urban landscapes.	
	Environmental trade-offs in water quality and climate regulation resulting from floodplain	
	restoration using the two-stage ditch: Our overall objective for this project was to assess the	
	environmental tradeoffs between water quality and climate regulation that may exist when	
	best management practices (BMPs) are implemented in agricultural watersheds. We focused	
	on two-stage channels that are implemented in agricultural drainage networks. These	
	practices are constructed by creating inset floodplains within the existing channel thereby	
	tripling the overall width. Specifically, the team sought to answer the following questions: (1)	
	what is the contribution of denitrification to N retention at the reach scale? (2) what	
	biophysical processes control phosphorus retention/export in streams with two-stage	
	floodplains? Three two-stage channels in Indiana were monitored for sediment and water	
	characteristics, including surface water chemistry, soil carbon and extractable phosphorus.	
	Rates of denitrification, nutrient flux, and pools of phosphorus in floodplain sediments were	
	measured seasonally. In summer 2017, a larger survey of 10 two-stage channels was	
	conducted and focused on phosphorus dynamics in the floodplains and streambed at sites of	
	varied ages and soil types. The results demonstrated that denitrification was higher on older	
	floodplains (e.g., 2007 construction), which we attribute to higher organic matter from the	
	combination of stream sediment deposition during flooding and seasonal growth and	
	decomposition cycles of floodplain grasses. Further, floodplain soils stored significantly more P	
	than streambed sediments and that P retention was most closely linked to organic matter	

		content and amorphous iron oxides in the soil. The research team measured less loosely	
		sorbed P and more amorphous iron oxides in constructed floodplains compared to naturalized	
		counterparts, which indicates that the highly vegetated, wider constructed floodplains	
		contribute less reactive P to surface waters when activated and have greater sorption	
		capacity. Soil testing during the early stages of a project could help identify those sites best-	
		suited for P management via two-stage channels and other management practices that rely on	
		soil-based approaches (e.g., grassed waterways).	
22.	A Multidisciplinary	Issue: Turfgrasses are estimated to cover over 16 million hectares in the U.S. with estimated	5.4 Natural
	Approach to	value of \$75 billion annually. In Indiana, production and maintenance of amenity turf is	resources and the
	Increase the	estimated as a \$2 billion industry including golf courses, athletic fields, sod farms, commercial	environment
	Sustainability of	lawns and residential turf. Turf is maintained under a broad range of environmental regimes	
	Turf Areas	with equally diverse budgets and expectations, by individuals ranging from seasoned	
		professionals to inexperienced homeowners. Turf quality, durability, and vigor are determined	
		by decisions made before (establishment decisions) and after (management decisions) the turf	
		stand is planted. Establishment decisions determine long-term performance of the turf stand.	
		Results of poor establishment are inherited by future managers and may limit ability to	
		maintain turf without significant expenditures in labor, irrigation, fertilizer and chemicals.	
		Selection of proper specie(s) and cultivar(s) when establishing turf is critical for long-term	
		performance with fewest possible inputs. Improved genetics and changing functional,	
		aesthetic and climatic demands are driving the need to re-evaluate turfgrass establishment	
		and maintenance recommendations for Indiana and the Midwest. Improved winter tolerance	
		of warm-season grasses, new zoysiagrass and bermudagrass germplasm, increased turf quality	
		in turf-type tall fescue, and improved drought tolerance and endophyte-mediated pest	
		resistance in a variety of species are more recent advancements. Emerging issues facing the	
		turf industry today and in the future are addressed by this project including: biological control,	
		carbon sequestration, climate change, nutrient use, organic agriculture, pest resistance,	
		sustainability, water quality, and water use. Management decisions regarding irrigation,	
		fertilizer use, pesticide applications, and mechanical maintenance practices influence turf	
		quality and vigor on a day-to-day basis. These management decisions carry significant	
		economic costs, raise environmental concerns, and influence the long-term vigor of the turf	
		sward.	
		Target Audience: Public, scientists, turf managers	

	What has been done: The overarching goal of this multi-disciplinary project is to enhance	
	sustainability of managed turfgrass systems by reducing environmental footprint from inputs	
	and developing novel strategies to maintain persistent turf that provides functional, social, and	
	aesthetic benefits. In working toward this goal, this five-year research and extension project	
	broadly focused on: 1. Identify turf species and cultivars that require fewer inputs than	
	currently used systems and then refine establishment practices for those species. 2. Refine	
	maintenance and pest management practices that minimize inputs and optimize management	
	outcomes.	
	<u>Results</u> : These research and extension efforts aim to provide fact-based information for	
	managers to preserve and protect the environment by using fewer chemical and cultural	
	inputs while maximizing turfgrass appearance to primarily protect water quality and enhancing	
	our quality of life (e.g. provide healthy, safe recreational turf areas). In entomology, combined	
	research and extension efforts aim to provide turfgrass managers and the general public with	
	science-based recommendations for sound insect pest management, and the development of	
	environmentally sustainable, next-generation pest management tools useful for managing	
	turfgrass insect pests. Chemical ecology work with billbugs is opening the door for exploiting	
	chemical communication to manage this important pest complex, while efforts to understand	
	biogeochemical dimensions of white grub larval ecology are providing new insights into factors	
	driving ecology of soil insects. For herbicide resistant weed management, the research team	
	continued a garden experiment of populations of buckhorn plantain (<i>Plantago lanceolata</i>) and	
	presented research on non-chemical control options. Dissemination of data related to	
	importance of identifying weeds and selecting appropriate herbicides has continued to help	
	turf managers maximize efficacy and minimize herbicide applications in the field. Research on	
	the whole-plant response to drought, heat, salinity and flooding stresses is providing insight on	
	how to improve turfgrasses. Germplasm characterization and gene identification will benefit	
	turfgrass breeders for genetic improvement of stress tolerance in turfgrass. The research	
	group continues to work on ways to help turf managers be efficient with use of water in	
	landscape. A combined approach was based on both molecular and applied research, such as	
	identifying specific peroxidases, closely associated with drought tolerance traits in wild grass	
	species. The team evaluated germplasm (species and cultivars) for turf species (both warm and	
	cool-season) that may be adapted and persist in this cool-humid/transitional climate. This is	
	achieved through active participation in testing programs like the National Turfgrass	
	Evaluation Program, The Turfgrass Water Conservation Alliance, and co-	

		operation/collaboration with various turfgrass breeders across the United States.	
		Infrastructure and replicated field plots were established again in 2019 to increase capacity to	
		better assess chronic drought stress at different mowing heights and the supplemental	
		irrigation needs of common lawn species. Additional research was initiated to provide	
		important information on whole plant response to drought, salinity and flooding stresses.	
		Germplasm characterization and gene identification will benefit turfgrass breeders for genetic	
		improvement of stress tolerance in turfgrass. We also performed research on the ecology of	
		weeds prevalent in non-irrigated turfgrass to learn more about weed management in non-	
		irrigated turf based on various mowing and fertilization practices.	
23.	Rainscaping to	Issue: There is a need for education on sustainable landscape practices to prevent polluted	5.5 Natural
	Prevent Polluted	runoff. Landscape practices such as rain gardens, which direct stormwater to be absorbed by	resources and the
	Runoff	plants and soils, are of increasing interest among Extension clientele and conservation	environment
		partners.	
		Target Audience: Master Gardeners, conservation agencies and organizations, stormwater	
		professionals, and landscape companies and consultants.	
		What Has Been Done: Rainscaping is a combination of sustainable landscape design and	
		management practices that prevents polluted runoff from reaching water bodies, directing	
		stormwater to be absorbed by plants and soils. Purdue Extension built on the highly successful	
		Purdue Master Gardener program, to form the Purdue Rainscaping Education Team.	
		Curriculum materials were created for delivering workshops statewide, instructional videos,	
		participant and marketing materials, and local host guide. Instruction covers introduction to	
		rainscaping and rain gardens, rain garden site selection, plant selection and garden design,	
		installation, maintenance, and community engagement. A flipped classroom where	
		participants watch videos before 15-hour in-person training of hands-on activities, interactive	
		discussions, and field trips to community rainscaping projects. A smartphone app "Rain	
		Garden" was launched in collaboration with the University of Connecticut containing a	
		specialized list of plants suited for Indiana. Rainscaping participants gain experience by	
		creating a demonstration rain garden with community partners in a public space. Custom	
		designed interpretive signs are installed to promote education. Participants are encouraged to	
		attend Rainscaping as community teams to support implementation of public education	
		programs and provide technical assistance for homeowners or small-scale public projects	
		afterward. Programs have been delivered in eight Indiana counties and in partnership with	
		Illinois Extension.	

Results: Johnson, Marion and Posey Counties (35 participants) installed demonstration rain	
gardens. Johnson and Marion counties partnered with Master Gardeners to install a rain	
garden on the Extension office property. Posey County worked with Soil and Water	
Conservation District and Master Gardeners to update a demonstration rain garden in Mt.	
Vernon Riverfront Park. Steuben, Lake, Boone and Warrick Counties (51 participants) installed	
demonstration rain gardens and interpretative signage. Steuben County Master Gardeners	
partnered with Pokagon State Park to install a rain garden on park property. Lake County	
worked with Soil and Water Conservation District to create a demonstration rain garden on	
county government grounds. Boone County Master Gardeners collaborated with a church to	
install a rain garden next to the public community gardens. Warrick County worked with	
County Soil and Water Conservation District, county parks department and Master Gardeners	
to install a new rain garden in Friedman Park. St. Joseph County with the Soil and Water	
Conservation District (27 participants) planted a demonstration rain garden in South Bend.	
Purdue Extension team planted a demonstration rain garden at the Purdue University Wright	
Center. Purdue Extension formed a partnership with Illinois Extension, the Illinois Indiana Sea	
Grant, and the Peoria Innovation Team, to install a demonstration garden in Peoria, Illinois (25	
participants).	
On post-surveys, participants indicated an increase in knowledge, and would recommend	
Rainscaping to others. For 61 respondents, 98% indicated Rainscaping increased their ability to	
plan and install a rain garden, and 98% intend to directly apply information within the year.	
Plan to use what they learned included: 1) I plan to educate others who want to build rain	
gardens. 2) I plan to create several rainscaping methods to install on our property to leverage	
as education opportunities in our area! 3) My job involves outreach to a wide range of	
stakeholders for pollution mitigation so I will certainly share my deeper knowledge. My	
volunteer life involves green infrastructure so I will use this information and share in this	
aspect of my life too. 4) Through presentations with customers, informal conversation and	
hopefully presentations to groups.	
Follow-up interviews found participants using program materials and resources to launch	
broader community education rain garden activities in their communities. Report activities	
were rain garden installations, tours, community education programs, and exhibitor booths.	
An online database is available for tracking rain garden installation projects and calculate	
ecological benefits (e.g., reduction in stormwater runoff). Demonstration rain gardens	
installed as part of Rainscaping from 2017-2019 have the capacity to reduce runoff leaving the	

		properties by 760,720 gallons per year. This reduction in flow and associated nutrients can	
		improve water quality in Indiana communities.	
		Other Information: https://nemo.uconn.edu/tools/app/raingarden.htm,	
		https://extension.purdue.edu/rainscaping/	
24.	Woodland Owners	Issue: Approximately 150,000 residents of Indiana own property that includes 10 or more	5.6 Natural
	Increased	acres of woodlands. Most of these individuals are unaware that their properties are infested	resources and the
	Knowledge and	with invasive plants that threaten the health and survival of their woodlands. A need for	environment
	Skills for Invasive	education and training regarding the management of these private woodlands is necessary to	
	Plant Control	maintain the health and beauty of the ecosystems for current landowners and future	
	Strategies and	generations.	
	Resources	Target Audience: Woodland owners	
		What Has Been Done: The Purdue College of Agriculture's Southern Indiana Purdue	
		Agricultural Center (SIPAC) is an active research and training center nestled on 1518 acres with	
		635 of that as wooded forest, just 160 miles from the university's West Lafayette campus.	
		SIPAC's forestry and natural resources professionals have been helping residents manage their	
		woodlands for more than 38 years. Invasive Plant Control Training for Landowners, a day-and-	
		a- half workshop, was made available through a collaborative partnership with the Southwest	
		Conservation Department, the Invasive Species Awareness Coalition of Dubois County, the	
		Four Rivers Forestry Committee, Orange County Invasives Partnership, and the Indiana	
		Department of Natural Resources. Instruction and hands-on training in the SIPAC forest	
		addressed the three pillars of invasive management – prevention, early detection, and	
		strategic management of existing infestations. Topics included assessing an invasive plant	
		problem (species, size, and amount), invasive plant control options, selection of methods best	
		suited for woodland situations, proper herbicide application, how to seek funding and	
		technical assistance, putting a plan into place for long term restoration, enhancement, and	
		when to hire a contractor. Thirty-one participants attended the training.	
		<u>Results</u> : On post-surveys from 31 property owners, who cumulatively represented 4189 acres	
		of land in and around Indiana, rated their level of knowledge (a scale of 1 for not at all, to 5	
		very much) before and after training. Respondents reported very little knowledge of the	
		"three pillars" of invasive species plant management, and by the end of training, they had	
		gained the most knowledge on this (average rating pre 1.83, post 4.23). For herbicide use on	
		species, how much to use, and resources to contact for assistance, knowledge levels showed	
		great improvement (average rating pre 2.16, post 4.20). At end of training, respondents	

		reported highest levels of knowledge for: why invasive plants are considered a threat (average	
		4.73), how to get help with managing invasive vegetation on their property (average 4.45), and	
		how to assess the invasive species, then prioritize and plan to address infestation on their	
		property (average 4.37). The Net Promoter Score [®] (NPS [®]) (Fred Reichheld and Satmetrix	
		Systems, Inc.) is a measure of customer experience. When asked how likely they would be to	
		recommend this field day to a friend or colleague, respondents could mark on a scale from	
		zero (not at all likely) to ten (extremely likely). Respondents selecting zero to six are	
		considered "detractors" (critics or unhappy customers), those selecting seven and eight are	
		considered "passives" (satisfied but unenthusiastic), and those selecting nine and ten are	
		considered "promoters" (loyal enthusiasts). Most (90%) identified as promoters (loyal	
		enthusiasts), 10% Passives (satisfied but unenthusiastic), and no detractors (critics or unhappy	
		customers). The NPS [®] , determined by subtracting the percentage of detractors from the	
		percentage of promoters and can range from -100 to 100, was 90, considered "world class",	
		showed participants were greatly satisfied with training. Respondents indicated training was	
		useful for providing new knowledge to help them make future decisions (100%) and take	
		actions (97%) to manage invasive plants on their property. Respondents indicated plans to	
		adopt practices from the training within the next 12 months, including identifying invasive	
		plant problems on their property (97%), taking steps to prevent new infestations (84%),	
		assessing infestation, prioritizing and managing invasive plants (81%), incorporating invasive	
		plant management in their forest/wildland management plan (81%), and seeking professional	
		expertise in managing invasive vegetation (71%). As a result of the training, private woodland	
		property owners gained knowledge and skills for adopting the three pillars of invasive plant	
		management (prevention, early detection, and strategic management of existing infestations),	
		on their forests and wildlands which can help contribute to the saving of Indiana's woodlands.	
25.	Sustainable	Issue: For communities to achieve ecosystem sustainability, it must be known what land and	5.7 Natural
	Communities:	habitat components are necessary to sustain their ecosystems. Communities need to	resources and the
	Environmental	understand science-based environmental limits or "tipping-points," to institute land use	environment
	Watershed Planning	policies and restoration plans that ensure critical green infrastructure and maintain habitat-	
	with the Tipping	sustaining ecosystems. Developing new policies that solve natural resource challenges at local	
	Point Planner	to global scales will require close collaboration between the scientific community that has	
		studied these problems and the policy community that understands how planning can be	
		crafted to improve human and environmental well-being.	

Target Audience: Extension specialists, coastal managers, consultants who work with plan	
commissions, watershed planning committees, municipal officials and planners, local	
government entities (town councils, plan commissions and parks departments), non-profit	
staff, and interested stakeholders in the community.	
What Has Been Done: Tipping points are measures of ecosystems or social systems that	
determine whether systems are moving from a "good state" to an "undesirable state" along	
ecological dynamics altered by human activities. To better understand tipping points and apply	
them to decision-making about land at a watershed scale, researchers and Extension	
professionals at several Great Lakes universities in Illinois, Indiana, Michigan, Wisconsin, and	
Ohio, calculated environmental tipping points that communities should avoid. A web-based	
decision support tool, Tipping Point Planner (TPP), developed by the Purdue-led team,	
organizes community objectives, data, models, and planning tools into a simple interactive	
framework. TPP helps watershed leaders identify land-based activities resulting in nutrient	
loading, increased runoff, and non-point source pollution, threatening sustainability of	
ecosystems in watersheds. Purdue Extension's Conservation through Community Leadership,	
along with TPP, and in collaboration with Illinois-Indiana Sea Grant supported communities to	
facilitate, implement and maintain locally driven natural resource management. Team	
members conducted workshops with Northwest Indiana, West Lafayette, Portage, Union	
Township, Pendleton, and Gibson and Kosciusko counties in Indiana, Green Bay, Wisconsin,	
Ottawa, Illinois, the Shiawassee National Wildlife Refuge, Michigan, and Perrysburg, Ohio.	
Community programs in Michigan and Ohio included education and visioning sessions with	
community stakeholders, and action planning meeting series with steering committees of local	
experts. Work with Huron Pines, a Michigan-based environmental non-profit, and Michigan	
Sea Grant gathered regional stakeholders for three meetings on creation of a watershed	
management plan for Au Gres River and East Au Gres River Watersheds (Saginaw Bay,	
Michigan). The team guided community visioning sessions to determine priorities for	
watershed management to better inform next steps for local and regional planners. The team	
worked with Ohio Sea Grant and Reveille, Ltd. in Perrysburg, Ohio (Maumee River Watershed)	
to support development of a city-wide land use plan. The team worked with a steering	
committee and guided community visioning sessions to determine priorities for watershed	
development and water quality. Purdue Extension also collaborated with Indiana State	
Department of Agriculture to create a new guidebook, Community Planning for Agriculture	
and Natural Resources: A Guide for Local Government, available free online, which provides	

		education resources and examples how to integrate agriculture and natural resources in	
		community land use planning and in comprehensive plan updates.	
		Results: Many (75%) of participants (12) from Au Gres, Michigan and Perrysburg, Ohio	
		workshops, rated workshops very good/excellent for learning about environmental land use	
		planning and management and for building connections to resources. Respondents increased	
		knowledge levels: 1) assessing ecosystem health for natural resource management options	
		(before 30%, after 75%). 2) applying decision support tools to make decisions and take actions	
		on ecosystem health (before 38%, after 66%). 3) Forming diverse community partnerships to	
		create and implement environmental land use action plans (before 46%, after 66%).	
		Participants identified a most significant item they will apply in their community: 1) How listing	
		assets and opportunities can show strengths and opportunities for growth, 2) How certain	
		types of land use can change and affect stream quality in different ways, 3) That stakeholders	
		across sectors are all thinking about and recognizing the economic and community	
		development approaches from high-quality natural resources, and 4) Focus on application of	
		tools and information. All reported better understanding of environmental land use planning	
		and management issues facing their community. Most (92%) reported they were likely/very	
		likely to use information for future environmental land use planning and management. All	
		stated they would use information within 12 months. Respondents shared how they plan to	
		use what they learned: 1) Future programmatic planning to target the topics developed in	
		discussions, 2) Future land acquisition and development planning, 3) I believe that we will use	
		different tools (ex. conservation easements, reduction of impervious surfaces) to benefit the	
		region, and 4) I was made aware of the issue that growth will cause in the future. Purdue	
		Extension and Illinois-Indiana Sea Grant guided community participants in using TPP to	
		evaluate ecosystem services and develop action plans to direct conservation and management	
		of ecological resources. These efforts will contribute to improved health of watersheds in the	
		Great Lakes region.	
		Other Information: https://cdext.purdue.edu/guidebook.	
26.	Regulation of	Issue: The sun is the principle source of energy for our planet, and photosynthesis is the	6.1 Sustainable
	phenylpropanoid	primary mechanism by which that energy is captured and stored in the form of reduced	energy
	metabolism in	carbon. An outcome of these biochemical events is that plants represent a quantitatively	
	plants	important, sustainable, and carbon-neutral source of energy for humans. To maximize the	
		utility of plants, it is important to gain control of processes associated with energy capture and	
		storage, including molecular mechanisms that allocate fixed carbon to the myriad biochemical	

pathways in plants. One most significant is the phenylpropanoid biosynthetic pathway that	
leads to the deposition of lignin. Lignin is a cross-linked phenolic polymer that makes the cell	
walls of specialized plant cells more rigid. Its synthesis represents the single largest metabolic	
sink for phenylalanine in the biosphere and, represents a huge metabolic commitment for	
plant metabolism. Lignin is also a significant barrier to using crops for livestock feed, pulp and	
paper production, and generating cellulosic biofuels. There is great need to understand lignin	
biosynthesis while simultaneously improving the ability to engineer plant metabolism to be	
modified for improvement of agriculture. Enzymes of lignin biosynthesis have been identified,	
but we know little about how expression is regulated. Several transcription factors have been	
isolated, but it is unclear how expression and activity dictate or contribute to allocation of	
photosynthate to lignin as opposed to other plant components such as cellulose or starch. Two	
novel, plant-specific proteins (REF4 and RFR1) have been identified that appear to control the	
amount of lignin a plant produces. REF4 and RFR1 are components of Mediator, a large multi-	
protein complex that facilitates interactions between DNA-bound transcription factors and	
RNA polymerase II to activate or repress expression of downstream genes. Mutants of	
Arabidopsis that lack REF4 and RFR1 are viable and show few developmental changes, making	
them a tractable system to examine the function of Mediator. These mutants accumulate	
more phenylpropanoid end products including lignin. Plants carrying a mutant dominant form	
of REF4 show the opposite phenotype. REF4 and RFR1 appear to be components of a system	
that determines amount of carbon allocated to the phenylpropanoid biosynthetic pathway.	
Target Audience: Scientists, public	
What has been done: To determine how REF4 and RFR1 function as components of Mediator,	
a set of experimental approaches including immunoprecipitation methods were used to	
determine proteins with which REF4 and RFR1 interact in the Mediator complex. These	
experiments establish which proteins are relevant to regulation of phenylpropanoid	
accumulation in plants and simultaneously identify additional proteins relevant to this process.	
Chromatin immunoprecipitation will be used to identify targets of REF4 and RFR1 proteins in	
the Arabidopsis genome to understand which genes must be altered to divert more or less	
carbon into the lignin biosynthetic pathway. Finally, we determined the functional differences	
between REF4 and RFR1 by altering relative expression levels in different tissues. We are	
learning how REF4 and RFR1 function to coordinate transcription of genes required for lignin	
deposition and gain insights into how this pathway can be manipulated for human energy	
needs.	

<u>Results</u> : The Mediator complex functions as a hub for transcriptional regulation. MED5, an	
Arabidopsis Mediator tail subunit, is required for maintaining phenylpropanoid homeostasis. A	
semi-dominant mutation (ref4-3) that causes a single amino acid substitution in MED5b	
functions as a strong suppressor of the pathway, leading to decreased soluble	
phenylpropanoid accumulation, reduced lignin content and dwarfism. In contrast, loss of	
MED5 results in increased levels of phenylpropanoids. Using a reverse genetic approach to	
identify suppressors of ref4-3, it was determined that ref4-3 requires CDK8, a kinase module	
subunit of Mediator, to repress plant growth. The genetic interaction between MED5 and	
CDK8 was further characterized using mRNA-sequencing (RNA-seq) and metabolite analysis.	
Growth inhibition and suppression of phenylpropanoid metabolism can be genetically	
separated in ref4-3 by elimination of CDK8 kinase activity; however, the stunted growth of	
ref4-3 is not dependent on the phosphorylation event introduced by the G383S mutation. In	
addition, rather than perturbation of lignin biosynthesis, mis-regulation of DJC66, a gene	
encoding a DNAJ protein, is involved in the dwarfism of the med5 mutants. This study reveals	
genetic interactions between Mediator tail and kinase module subunits and will enhance	
understanding of dwarfing in phenylpropanoid pathway mutants. Plants produce several	
hundreds of thousands of secondary metabolites that are important for adaptation to various	
environmental conditions. Although different groups of secondary metabolites are synthesized	
through unique biosynthetic pathways, plants must orchestrate their production	
simultaneously. Phenylpropanoids and glucosinolates are two classes of secondary	
metabolites that are synthesized through apparently independent biosynthetic pathways.	
Genetic evidence has revealed that the accumulation of glucosinolate intermediates limits	
phenylpropanoid production in a Mediator Subunit 5 (MED5) dependent manner. Analysis of	
the transcriptomes of a suite of glucosinolate-deficient mutants using RNAseq identified mis-	
regulated genes that are rescued by the disruption of MED5. The expression of a group of	
Kelch Domain F-Box genes (KFBs) that function in PAL degradation is affected in glucosinolate	
biosynthesis mutants and the disruption of these KFBs restores phenylpropanoid deficiency in	
the mutants. This study suggests that glucosinolate/phenylpropanoid metabolic crosstalk	
involves the transcriptional regulation of KFB genes that initiate the degradation of the	
enzyme phenylalanine ammonia-lyase, which catalyzes the first step of the phenylpropanoid	
biosynthesis pathway. Nevertheless, KFB mutant plants remain partially sensitive to	
glucosinolate pathway mutations, suggesting that other mechanisms that link the two	
pathways also exist.	

27.	Disparities in school	Issue: Fewer than half (48%) of children living in poverty start kindergarten ready for school.	7.1 Human, family,
	readiness: The role	Compared to their more affluent peers, these children begin school with poorer pre-academic	community health
	of geographic	skills (e.g., letter recognition, early math), social-emotional health, and self-regulation (e.g.,	and well-being
	region, family,	executive function processes). Early school readiness skills influence more than just	
	community, and	kindergarten academic outcomes. Children with strong school readiness, measured between	
	preschool	ages 4 and 5, are more likely to have academic success in elementary, middle, and high school,	
	experiences	and more likely to graduate college by age 25. School readiness is linked to earned income in	
		adulthood and considered a necessary benchmark for entry into middle class. Gaps in school	
		readiness have important long-term implications for educational and economic success.	
		Geographic region is a unique, yet understudied, context for development of school readiness.	
		Striking variability exists along urban-rural continuum of kin networks, access to resources,	
		and educational opportunities; disparities across urban-rural continuum in academic	
		achievement for young, elementary school children are beginning to emerge. Recent analyses	
		utilizing a nationally representative sample suggest that elementary school age children living	
		in rural communities are less proficient in their early literacy skills and 60% more likely to be	
		placed in special education services compared to their urban counterparts. However, scant, if	
		any, research has been dedicated to understanding whether geographic region plays a role in	
		children's development before kindergarten entry, and specifically whether it has an impact	
		on school readiness.	
		Target Audience: Public, childcare and developmental specialists, rural educators	
		What has been done: 1. Identify differences between family, community, and preschool	
		experiences of low-income children across the urban-rural continuum. 2. Explore differences	
		in three aspects of children's school readiness (pre-academic skills, social-emotional health,	
		and executive function) across the urban-rural continuum. 3. Results from the first two	
		objectives will inform an investigation about whether aspects of children's family, community,	
		and preschool experiences act as mechanisms linking geographic region and school readiness.	
		Results: All data for these stated objectives have been collected. Analyses have been	
		completed and results either have been or are currently being disseminated. Key findings: (1)	
		children from rural communities and small cities are more demographically at-risk relative to	
		children living in urban communities (e.g., lower parental education and family income). (2)	
		Children from rural communities experience slightly higher preschool classroom quality	
		compared to their urban counterparts. (3) There are tew differences in children's school	
		readiness across the urban-rural continuum; however, children from rural communities were	

		rated by their teachers as having higher social competence compared to children in urban	
		communities. Children who live in rural communities, and to some extent, children from small	
		cities, benefit more from high preschool classroom quality in terms of their social-emotional	
		competence relative to children who reside in large urban communities.	
28.	INWork: INovate,	Issue: The Indiana Workforce Department estimates that there will be one million jobs by	7.2 Human, family,
	INvest, INspire:	2025. The current statistics of Indiana's unemployment rate of 3.5% in comparison to the	community health
	Skills for	nation's 3.7% rate illustrates that Indiana is facing a worker shortage. In 2007 the report, Every	and well-being
	Tomorrow's	Promise, Every Child: Turning Failure into Action, youth defined their success as having a good	
	Workforce	job, yet lack the skills needed to make for a productive and successful workplace.	
		Target Audience: High School Youth	
		What Has Been Done: Purdue Extension developed and implemented INWork – INnovate,	
		INvest, INspire – Skills for Tomorrow's Workforce which teaches high school youth life skills for	
		the working world. To increase the number of qualified applicants for Indiana jobs, Purdue	
		Extension joined forces with local educational institutions to offer INWork throughout Indiana.	
		There were 180 youth who completed the program offered in 10 counties. Youth participated	
		in a minimum of 6 hours of hands-on career readiness activities. Sessions included: SMART	
		goal setting, decision making, personal accountability, professional dress, teamwork, problem	
		solving, conflict resolution, time management, safe and professional social media, fiscal	
		literacy, career exploration, preparing resumes and cover letters, and interviewing.	
		<u>Results</u> : As a result of INWork, high school youth recognized the importance of being on time	
		to work (100%), doing their job well (100%), being trusted by their employer (99%), and to	
		respect others in the workplace (99%). Youth (90%) reported that they understand the	
		importance of having a professional image on social media. For future careers, 87%	
		successfully explored career options, and 81% were able to identify a career they would like to	
		pursue. Looking ahead beyond high school, 79% plan to attend a 4-year university the year	
		after high school, 72% identified jumping into the workforce as another viable option within	
		the first year of high school completion, 70% plan to attend a community college, and 52%	
		plan to attend vocational college. By completing INWork, these youth showed positive	
		development preparing them to work after high school, with skills that will help them succeed.	
29.	4-H Adult Volunteer	Issue:	7.3 Human, family,
	Positive Impacts on	Adult volunteers are highly used to conduct programs in the 4-H Youth Development Program.	community health
	Indiana Youth and	Significant staff and financial resources are expended for developing volunteers to work with	and well-being
	Communities	various aspects of the 4-H Program. Are these volunteers effective? What types of impact does	

	their service provide? The North Central Region 4-H Volunteer Impact study provided these	
	answers.	
	Target Audience: Adults, Youth	
	What Has Been Done:	
	The Indiana 4-H Youth Development Program relies heavily on adults who care about the	
	development of youth to deliver positive youth experiences. There are a variety of	
	opportunities for adult volunteers, they can: help with a one-time event/program, lead a 4-H	
	Club, help with a 4-H project, help with an afterschool program, help with a summer program,	
	sit on a county governing board, volunteer on a fair organizing committee, and serve as a	
	judge for 4-H project exhibits. All adult volunteers must pass a background check and	
	participate in training. The Youth Safety and Reporting Child Abuse training is completed every	
	two years, New 4-H Volunteer Orientation is done via online modules, and the 4-H Mentor	
	Manual along with many other resources are available in collaboration with Extension	
	Educators in each county and on the 4-H website. A North Central Region 4-H Volunteer	
	Impact Study was conducted with adult volunteers in the 4-H Youth Development program.	
	The purpose of this 12-state study was to better understand the value of being a 4-H	
	volunteer. A total of 1,000 randomly selected volunteers from each state were asked to reply	
	to an electronic survey. Reports were developed summarizing North Central Region data. This	
	statement shares the results for Indiana.	
	<u>Results:</u>	
	Some 255 Indiana 4-H Adult Volunteers responded to the survey (25.5% response rate). Top	
	reasons they volunteered were to help others, make a difference, and support a child in 4-H.	
	Some (47%) volunteers reported having a tenure of at least 11 years, another 25% had	
	volunteered 2-5 years, while 23% volunteered between 6 and 10 years. Nearly two-thirds of	
	the volunteers were part of 4-H as a child. Indiana adult volunteers personally benefitted from	
	their 4-H involvement. Volunteers (90%) built new relationships with youth. One volunteer	
	stated: "Impacting the youth's experience and assisting them with preparation for the future, I	
	genuinely enjoy just having the opportunity to meet these young individuals and get to know	
	them while seeing their growth over time." Volunteers (87%) gained skills that are useful in	
	other settings. One volunteer stated, "I've used some of the activities I've taught in club	
	meetings in an atter-school mentoring program I volunteer with in one of our city's most	
	troubled neighborhoods. Tried and true activities that have worked for my 4-H kids have been	
	well received with these less fortunate students." Volunteers (79%) learned to think from	

different perspectives. One stated, "Working with students with special needs. These students	
have unique personalities and want to be treated like other students or 4-Hers. They just need	
more help in accomplishing tasks."	
Indiana 4-H Youth benefitted from volunteers. On average volunteers give 8.3 hours per	
month, an annual contribution valued at \$2,241/volunteer (based on Independent Sector	
hourly rate for Indiana - \$24.13), 93% contributed supplies and 85% contributed financially.	
Most (95%) taught youth new skills. One said, "Getting kids involved in not only doing the	
projects but holding an office in our clubs helps them learn leadership skills which they carry	
into their school careers, into college, and then into life in our communities to help build a	
stronger, better world for all of us to live in." Many (88%) recruited new youth to 4-H. One	
volunteer stated: "4-H crosses all economic and social lines. It gives city kids the access to	
animals in the rural parts of the county. It gives kids skills that will last a lifetime. Who knows	
what skills will be valuable in the future? 4-H gives kids the flexibility to learn skills that they	
may use in the future." Many (85%) planned learning experiences for youth. One responded,	
"Young adults will become the future of our communities. Basics such as integrity, truth,	
honesty, hard work and responsibility are all attributes that are communicated through	
numerous 4-H activities."	
Communities are stronger because of 4-H Youth Development volunteers. Many said	
volunteering with 4-H: makes communities stronger (90%), contributes to better connected	
communities (88%), improves the health of communities (80%), and increases civic	
involvement (73%). The 4-H program helps youth build skills. One volunteer said, "The	
students I've met through 4-H are incredibly capable in a host of arenas. They can build a	
robot, fix a small engine, and decorate a cake. Skills make communities stronger. Communities	
need people who can do things. 4-H does that very well." Many volunteers reported taking on	
new community leadership roles and opportunities. One said, "	
For the very first time ever, my husband and I (both 4-H volunteers) became more vocal in the	
political process for our community and our state." The 4-H program would not be possible	
without volunteers. Through their 4-H training and service, adult volunteers grow personally,	
enrich the 4-H program, help youth build skills, and make Indiana communities stronger.	
Other Information: https://extension.purdue.edu/4h/Pages/volunteer.aspx	

30.	Co-Parenting for	Issue: Indiana is home to more than 1.5 million children under 18 years of age. Although some	7.4 Human, family,
	Successful Kids	change in children's lives is normal, abrupt or involuntary disruptions can affect feelings of	community health
		security. Instability is often associated with family stress and can negatively impact physical,	and well-being
		emotional and cognitive development. In Indiana, when a family is going through a divorce or	
		seeking child custody, co-parenting education is at a judge's discretion. With the national	
		average of about half of all marriages ending in divorce, this situation affects a great number	
		of our children.	
		Target Audience: Parents, Court Systems	
		What Has Been Done: Purdue Extension provided Co-Parenting for Successful Kids (CPSK) to	
		meet the statewide need of co-parenting education. This four-hour program addresses several	
		topics: how children are affected by divorce; stages of grief and adjustments; parenting styles;	
		discipline; parenting plans; stress; and keeping children out of the middle of adult conflicts.	
		Parents in Indiana completed the online course and received feedback about their journal	
		submissions from trained Purdue Extension facilitators. Other parents attended one of the 52	
		onsite classes. There were 544 parents enrolled in CPSK, (190 online, 354 onsite), with 924	
		children relationships (online parents had 347 children, onsite parents had 577 children). A	
		post-/pre-reflective evaluation was implemented at program end. A total of 525 parents	
		completed the survey.	
		Results: Parents learned to: keep children out of the middle of adult conflicts between the co-	
		parents (96%); develop and follow a child-focused co-parenting plan with the other parent	
		(95%); have more positive communication with the co-parent by using "I" messages (95%);	
		and help their children adjust to the divorce or custody modification based upon the children's	
		ages and stages (95%). All parents (100%) reported that they intended to use the strategies	
		learned, to keep children out of the middle of conflict with the other parent, and to help their	
		children adjust to the new co-parenting arrangements.	
		Parents (99%) intended to: search for the positive in the other parent and actively point this	
		out to their children; use "I" messages more frequently than prior to the class; stop criticizing	
		the other parent in front of their children; develop and follow a detailed, child-focused co-	
		parenting plan with the co-parent; and stop asking children to relay messages to the other co-	
		parent. Parents indicated the most useful information was: communication and the use of "I"	
		messages; followed by creating and following a cooperative co-parenting plan; discipline and	
		parenting styles; and dealing with stress. Parents wrote: "The information based off of ways of	
		disciplining as well as age groups needs was important to me. These are the foundations to	

		making their lives more functional so that he and I can work together easier. I also found the	
		information about how to speak to him so that he doesn't feel as if I'm attacking him just by	
		how I say things when I don't mean it negatively is very important for our communicating." "I	
		learned about how stress affects kids on the different stages of age. I learned about the	
		different parenting styles and which one I need to work towards and this program also made	
		me realize that I was not parenting the right way." "I'm not gonna talk negative about the	
		other parent. I'm gonna mention to the kids the good qualities of their mother. I'm gonna	
		create a great parenting plan, good for us parents and kids. And I'm gonna give my 100	
		percent so the divorce don't affect the kids too much." An online parent wrote "I was not sure	
		how I was going to feel about this course, but I was really surprised, pleasantly, at how much	
		the material made me think through this process. Thank you for putting together such a solid	
		course. I also really appreciated the feedback comments." Purdue Extension helps parents	
		learn that when co-parents are responsive, responsible, and especially respectful to the	
		children and each other, conflict between co-parents is reduced, and the overall well-being of	
		children is improved.	
31.	Mental Health First	Issue: Mental health and substance use issues are widespread concerns in the U.S. and often	7.5 Human, family,
	Aid	perceived differently than physical health conditions. This can perpetuate shame and stigma,	community health
		which may discourage individuals from seeking or accepting help. Evidence shows that	and well-being
		education to reduce the stigma in communities greatly improves an individual's chances of	
		successful recovery. The stigma surrounding mental health and substance use is not only	
		harmful to the individual, but also to their family and surrounding community. Community	
		members can gain skills to support one another, similarly to a CPR or medical First Aid	
		certification, to prevent distress and promote engagement in effective treatment. In the age of	
		the opioid crisis, every resource available is valuable and holds potential to save lives.	
		Target Audience: Adults	
		What Has Been Done: Purdue Extension provides Mental Health First Aid (MHFA) courses to	
		adults about signs and symptoms of mental health and substance use issues, as well as tools	
		for first-aid assistance to someone experiencing a crisis. MHFA is an eight-hour, in-person	
		course. The target audience is any adult interested in learning more about mental health	
		issues. Topics include anxiety, depression, substance use (including opioids), trauma, and	
		deliberate self-harm. During MHFA, participants learn how to be a resource to and support for	
		those at risk for mental health and/or substance use issues. MHFA was presented 15 times	
		during 2018-2019, reaching 414 individuals. There were 381 (92% response) who completed	

		the post-evaluation, and identified as female (74%), aged 24 years or older (94%), and	
		Caucasian/White (93%).	
		Results: Pos-evaluation results showed that MHFA was well-received by and beneficial to	
		participants. Participants (97%) agreed/strongly agreed that they are confident in recognizing	
		signs that someone may be having a mental health problem, substance use challenge or crisis.	
		Participants (95%) agreed/strongly agreed that they are confident in being able to reach out to	
		someone having a mental health problem, substance use challenge or crisis, and that they can	
		recognize and correct misconceptions about mental health, substance use and mental illness.	
		Some 93% agreed/strongly agreed they are confident asking a person whether they are	
		considering killing themselves. One individual noted, "This is a course that would benefit all	
		people." Another identified, "What I enjoyed most about this class was how the different	
		types of mental illnesses [were] discussed and how to handle the situations." To the program's	
		ability to provide a starting point in mental health education, one participant commented, "It	
		was definitely helpful for those new to the topic." This feedback and continued demand for	
		additional programs affirms its value in providing mental wellness and first aid training for	
		communities and residents across Indiana.	
		Other Information: https://extension.purdue.edu/mhfa/	
32.	Natural Resources	Issue: Natural resource management and land use planning decisions made by conservation	7.6 Human, family,
	Conservation	professionals, government and community leaders, and private landowners impact the quality	community health
	through	of Indiana's environment. Natural resource challenges cross all disciplines and audience groups	and well-being
	Collaborative	that Extension serves.	
	Community	Target Audience: public agency staff, nongovernmental organizations, those serving on	
	Leadership	boards/commissions with emphasis on natural resources management, conservation,	
		agriculture and land use	
		What Has Been Done: Purdue Extension's Conservation through Community Leadership (CCL)	
		is a statewide natural resource program to enhance decision-making for community	
		implementation. This Indiana-based curriculum has best practices from leadership training and	
		community development frameworks to facilitate community decision-making, leadership	
		development, and action planning for complex natural resource management and land use	
		planning. It includes resources: 1) for a community-based multi-meeting series on background	
		resources for land use planning and invasive species management, promotional materials,	
		meeting facilitation guidelines, and measurement and evaluation protocols, 2) available online	
		with the Tipping Point Planner, to provide county land use planning dashboards for	

	communities to better understand natural resources, and 3) for land use planning and invasive	
	species management online. CCL is a roadmap for communities to identify issues, assess	
	community conditions and resources, create a shared vision, and develop an action plan and	
	implementation strategies. This can take up to two years and involves convening community	
	leaders as a local working group meeting four times with Purdue Extension facilitators	
	supporting community visioning, sharing innovative management strategies, and coaching	
	them through action plan development. Results are a local or regional action plan and	
	implementation project strategies for working groups, county or municipal comprehensive	
	plan updates, watershed management plans, or fundraising initiatives. In the past three years,	
	CCL was initiated in Union Township, Kosciusko, Gibson, Dearborn, Pulaski, and Owen	
	counties, and Pendleton, Indiana. Each program was tailored for local issues. Kosciusko and	
	Pendleton focused on integrating natural resource elements into comprehensive plans. Gibson	
	convened to support a watershed management plan. Dearborn supported a community	
	garden initiative. Owen and Pulaski developed invasive species activities.	
	Results: Participant feedback shows CCL is meeting action planning needs for community	
	groups. Participants rated knowledge about forming diverse community partnerships to create	
	and implement land use and natural resource management action plans before and after the	
	program. Participants rated their knowledge excellent, before, 37%, and after 80%.	
	Comments: Great tool for assessing resource concerns and setting priorities.; I learned a lot in	
	total regarding (the community's) assets, opportunities, and natural resources as a whole!;	
	Great group process, Excellent facilitation, encouragement in working together in groups.; This	
	was a great workshop. It helped educate many leaders and interested residents. Helped our	
	community see our town through a different lens.	
	Pulaski had 15 participants from Pulaski County Soil and Water Conservation District and	
	Indiana Invasive Initiative whose CCL experience produced a 36-page action plan to guide	
	formation of the Cooperative Invasive Species Management Area (CISMA). All reported a	
	better understanding of natural resource issues facing their community and will apply	
	knowledge and tools gained within three months. The group convened to "think outside the	
	box about potential partnerships in the community." All reported a favorable/very favorable	
	response that CCL increased confidence in ability to plan for new invasive species collaboration	
	efforts. Participants commented, "This has been helpful to know what challenges the local	
	community is facing" and "I like how the program created a framework for brainstorming and	

	gathering group input. As far as I could tell everyone was comfortable sharing ideas, which	
	seems to be rare in group settings."	
	The 26 participants from Dearborn County Soil and Water Conservation District, and Purdue	
	Master Gardener State Coordinator and Gardeners collaborated to produce an action plan to	
	expand county-wide community gardening. Participants reported CCL was useful/very useful	
	for taking actions for next steps (91%) and making decisions about community gardening	
	(83%). Most (88%) said CCL was excellent for making connections to resources for	
	implementing action plans. Participants planned to apply what they learned, including: 1) This	
	was an excellent opportunity to brainstorm and work together as a community. The afternoon	
	was well-organized and on task. Looking forward to next steps! 2) Expand the network to	
	support growth of community garden development in southeastern Indiana, 3) This takes	
	people and money and time and education, and 4) There are many people and organizations	
	involved in making our community better.	
	Owen County Soil and Water Conservation District launched a Cooperative Invasive Species	
	Management Area (CISMA) effort via their CCL experience. All seven members reported a	
	favorable/very favorable in desire to get involved / increase involvement, and 86% increased	
	confidence in ability to plan for new invasive species collaboration. All reported better	
	understanding of natural resource issues facing their community and will apply knowledge and	
	tools gained within six months. Participants plan to use what they learned: invasive control on	
	private land, planning displays – decision-making, in starting other groups (watershed council),	
	working with board of supervisors, and taking better care of my land.	
	CCL supports development of high-quality local/regional action plans and strategies for	
	implementation in Indiana communities. Group planning can lead to a more collaborative	
	process with inclusion of multiple perspectives. Action plans addressed watersheds,	
	community comprehensive plan updates, invasive species council guidelines and plan	
	commission recommendations for improvements in Indiana's communities.	
	Other Information: http://tippingpointplanner.org/resources/regional-planning ,	
	www.purdue.edu/fnr/extension/scep/programs/conservation-through-community-leadership	

33.	Beginner's Guide to	Issue: Competitive grant proposals are an increasing revenue source for nonprofits,	7.7 Human, family,
	Grant Writing	educational institutions, and local governmental units. According to the National Center for	community health
	Helped Citizens	Charitable Statistics 13.3% of all nonprofit revenues came from private charitable giving and	and well-being
	Submit Proposals	33% came from government contracts (24%) and grants (8%). For Human Services nonprofits,	
	Awarded nearly \$4	65% of revenue came from government contracts or grants. 81% of nonprofits receive	
	Million for Indiana	government grants (2013 survey). Many people working in nonprofits and local governments	
	Communities	find themselves in positions in which they need or want to write grants but have little or no	
		training to do so. Writers who understand the grant writing process and can communicate	
		their ideas clearly to potential funders can leverage funding to improve the quality of life in	
		Indiana communities.	
		Target Audience: Staff/Volunteers from local governments, nonprofits and educational	
		organizations, community groups, clubs, and concerned citizens	
		What Has Been Done: For the reporting year, Purdue Extension's Beginner's Guide to Grant	
		Writing (BGGW) was delivered 15 times to 203 participants. Each workshop is hosted by an	
		Extension Educator and taught by a team of two trainers. Two full days of instruction and	
		activities are geared toward novice grant writers with an idea or a program in mind that will	
		help their community. Participants learned how to write effective grant proposals and	
		navigate the grant process, develop ideas into winning proposals, identify potential funders	
		and understand the full proposal development, submission and review process. Participants	
		bring an idea and leave with a proposal outline and all resources needed to expand the outline	
		into a full proposal. Participants return several weeks later with their full proposal ready for a	
		peer review and learn strategies for finding funding. During workshop, they polish their	
		proposals, get feedback from grant writing professionals, and search for grant funds with a	
		short-term subscription to a grant database. Purdue Extension received a \$5000 grant from	
		State Farm to offer BGGW statewide. Several community foundations contributed	
		sponsorships and in-kind support to individual workshops.	
		<u>Results</u> : Participants completed a survey at the end of the second day, then receive emails at	
		6, 12, 18, and 24 months after the workshop inviting them to complete follow-up surveys.	
		Results reflect data from five surveys collected over two years for two cohorts. There were 199	
		participants and 104 survey respondents (52%). Participants rated BGGW moderately to	
		extremely beneficial (94%) with most rating it very/extremely beneficial (70%). Respondents	
		reported, that as a result of BGGW: 76 (73%) submitted proposals to funders, 51 proposals	
		received funding, \$3,907,459 in grant funding was awarded, 44 participants took on new	

leadership roles, 10 organizations engaged in strategic planning, 106 partnerships formed,	
25.5 jobs were created, and 695 volunteer hours were completed (\$16,770.35 value,	
Independent Sector). Respondents commented: "The BGGW was one of the better workshops	
I've ever attended. I've always felt that I was a strong grant writer, but this training helped me	
see grant writing from the perspective of many other organizations and fields rather than just	
my own. One of the key components I took from this training was the ability to identify short,	
medium, and long-term goals that an organization should have when pursuing and securing	
grant funding." "I appreciated the workshop. I know how to write grants but planning on how	
to spend money and have actual evidence of what we want and how we are going to follow up	
with it was extremely helpful." "Great workshop. Really appreciate the follow up, and I'd play	
up the networking opportunities in the workshop." "Reviewing other grant proposals written	
by workshop attendees and having my grant proposal reviewed was very helpful and	
instructive." BGGW helps participants increase skills to write and submit, and ultimately,	
receive funding to support Indiana organizations and communities.	