Saved Search "clostridium"

Search these terms...
Search in these fields...
Show these fields in the results...
View results as:   Document   Tabular (* always hidden in tabular view)
↔ Hide Filters  Filter Chooser
↔ Show Filters 
 Project Title Accession Number Sponsoring Agency Project Director Project Start Date Project End Date Project Status Recipient City Name Keywords Non-Technical Summary Objectives
Development of bio-platforms for efficient conversion of lignocellulosic biomass and greenhouse gas to fuels and chemicals1020980National Institute of Food and AgricultureEzeji, Thaddeus10/15/201909/30/2024ACTIVECOLUMBUSLignocellulosic biomass, biofuel, agro-waste treatment, fermentation, anaerobic digestionNumerous processes have been developed or are currently in development for the bioconversion of plant carbohydrates (sugars), especially lignocellulosic biomass (LB), to fuels and chemicals. Due to the diverse nature of LB, this feedstock has yet to be economically converted into fuels and commodity chemicals. The proposed research would focus on the biosynthesis of 2,3-butanediol (2,3-BD), hydrogen (H2), acetone, ethanol and butanol using compatible bacteria and waste products - anaerobic digestion effluents, biodiesel-derived glycerol and LB. Butanol and 2,3-BD yields from LB (e.g. glucose, xylose, starch) conversion is not optimal because a significant amount of the biomass is converted by these microorganisms into un-captured CO2 and H2. We, therefore, also propose to develop a viable strategy to capture released CO2 and H2 and convert CO2 to acetone, ethanol and butanol; and improve the usable energy yield from LB. In parallel, the generated CO2 may be used in the waste and water treatment plants as part of wastes treatment - biofuel production integrated process. Meanwhile, while H2 is an excellent fuel with no carbon footprint upon combustion, 2,3-BD can be used as a precursor in the manufacture of a range of chemical products such as perfumes, printing inks, moistening and softening agents, fumigants, explosives, plasticizers, and octane isomers. The 2,3-BD is also an essential feedstock chemical for the synthesis of 1,3-butadiene (1,3-BD), the monomer of synthetic rubber, currently produced by cracking petroleum. The majority of hyper-2,3-BD producing microorganisms are pathogens, and this may have considerable effects on why most ongoing research in this area is being conducted overseas (probably due to regulatory and liability issues in the US). The bacteria we proposed to use for the production of 2,3-BD is non-pathogenic. The downstream products of 2,3-BD is estimated to have a global market for around 32 million tons annually, valued at approximately $43 billion (US) in revenue. The other product of interest, butanol, currently manufactured with petroleum feedstocks, is also an important chemical with many applications in the production of solvents, plasticizers, butylamines, amino resins, butyl acetates, etc. Global butanol consumption is expected to reach 13 million tons by 2024. The current market value of butanol is about $6.4 billion and its downstream products is valued at well over $40 billion. With increasing efforts to develop LB-based biorefineries to produce fuels and chemicals on a commercial-scale, residual wastes such as fermentation effluents are expected to markedly increase. Consequently, the relatively large nitrogen (N) concentrations of fermentation wastes may pose a serious hazard to human health and biodiversity because wastewater disposal may contribute significantly to environmental N concentrations. Anaerobic digestion (AD) is an attractive strategy for reducing the risks associated with large amounts of carbon and N in water bodies. Treatment (digestion) of protein-rich wastes, however, leads to the production of ammonia, which frequently compromises or abolishes the bio-digester reactions (stemming from multifaceted ammonia toxicity to the microorganisms involved in AD); a major economic challenge for the waste treatment industry. Our goal in this project, therefore, is to develop a viable strategy for generating butanol, 2,3-BD and H2 from agro-based wastes - LB, biodiesel-derived glycerol, and anaerobic digestion effluents along with development of effective N removal from solid and liquid wastes. This task has some challenges because biosynthesis reactions that result in the production of valuable fuels and chemicals do not generate compounds in amounts that are economically feasible for large-scale production because most fermentation processes are product limiting due to feedback inhibition and product toxicity to the fermentation microorganisms. We plan to develop or retrofit existing real-time product recovery technologies and adapt them for real-recovery of 2,3-BD, H2, acetone, ethanol and butanol during fermentation. Overall, we expect to develop platforms, which have the potential of becoming a part of the rubric of "green chemical" approaches that allow for conversion of LB and glycerol to valuable fuels and chemicals such as ethanol, acetone, H2, butanol and 2,3-BD. Numerous processes have been developed or are currently in development for the bioconversion of plant carbohydrates (sugars), especially lignocellulosic biomass (LB), to fuels and chemicals. Due to the complex heterogeneous nature of LB, this feedstock has yet to be economically converted into fuels and commodity chemicals. The proposed research would focus on the biosynthesis of 2,3-butanediol (2,3-BD), hydrogen (H2) and butanol through microbial-assisted interdependent utilization of two different waste products - biodiesel-derived glycerol and LB. Butanol and 2,3-BD yields from LB (e.g. glucose, xylose, starch) conversion is not optimal because a significant amount of the biomass is converted by these microorganisms into un-captured CO2 and H2. We, therefore, also propose to develop a viable strategy to capture released CO2 and H2 and convert CO2 to fuels and chemicals; and improve the usable energy yield from LB. The overarchinggoal of the proposed study is to use synthetic biology and functional genomics techniques to potentiate C. beijerinckii (Cb), C. carboxidivorans (Cc), and P. polymyxa (Pp) with mechanisms to counter the adverse consequences of LDMICs and enhance fermentation of LBH to butanol, 2,3-BD and H2. Additionally, we will incorporate, as needed, Saccharomyces cerevisiae and Pseudomonas putida to our plan to facilitate valorization of wastewaters to fuels and chemicals. Our overall objectives are:?1) increase NADPH generation by enhancing glycerol metabolism by overexpression of glycerol dehydrogenase (GDH) and dihydroxyacetone kinase (DHAK) genes2) develop LDMIC tolerant Cb and Cc strains with an improved capacity to convert LBH (switchgrass, Miscanthus, and corn stover) and CO2 to H2, acetone and butanol, and improve the yield and economics of production of these compounds 3) elucidate a process of degeneration of Pp and increase 2,3-BD production from LBH4) develop a bioprocess that converts industrial and agricultural wastewaters to fuels and chemicals5) develop an efficient bioreactor system for butanol fermentation and in situ real-time product recovery
Role of roast and storage conditions on chemical and biological characteristics of cold brew coffee1018488National Institute of Food and AgricultureRao, Niny02/15/201902/14/2023COMPLETEPHILADELPHIAchemistry, coffee, food safety, storage, cold brewCold brew coffee is a popular new brewing trend with a market growth of 580% from 2011 to 2016. Cold brew coffee is made through a low-temperature, long-contact brewing method where grinds are soaked with room temperature water (~25C) for 8 to 24 hours. Despite its growing popularity, very little research has been published on cold brew coffee chemistry.A range of online health and lifestyle blogs have published recipes and specific health claims for cold brew coffee without scientific basis. Further, nitro-cold brew coffee is a boutique cold brew beverage that is infused with nitrogen and has a mouthfeel similar to some craft beers. However, the introduction of nitrogen creates an anaerobic environment conducive to botulin toxin development. This research aims to establish a foundational understanding of some key chemical metrics of both traditional and nitro infused cold brew coffees. Total acidity, pH, 3-chlorogenic acid and caffeine concentrations, antioxidant capacity, and flavor will be measured for cold brew coffee extracts using three type of roasts. The presences and survivability of spoilage microorganisms will be analyzed during and after the brewing process in both traditional and nitro cold brew coffee. The immediate output of this project is to expand the understanding of cold brew coffee chemistry, including the survivability of spoilage microorganisms. The outcomes for this project are to educate coffee consumer about the cold brew coffee and to aid health officials in developing food safety inspection protocols. The ultimate goal is to Improve the best practice standards in cold brew coffee industry to provide better and safer experience to all consumers.This proposed work will yield important chemical and biological information about traditional and nitro-infused coffee that will be pertinent to home-brewers, retail vendors, RTD producers, and perhaps most importantly, coffee consumers. Given the significant growth in the cold brew coffee market, the potential importance of coffee's bioactive compounds on human health, and the potential food safety concerns in both the United States and Canada, this proposal seeks to investigate CGA and caffeine concentrations, pH and total acidity, total antioxidant activity, and presence/detection of botulinum in both traditional cold brew and nitro infused cold brew coffee brewed from a single-source coffee bean. This research will monitor these key characteristics for three different roasts over a three week storage period.This project is congruent with the AFRI Foundational and Applied Science Program area of food safety, nutrition, and health. Specifically, the project will address the program area priority of improving food quality. The knowledge gained in this project will provide consumers with scientifically based information about cold brew coffee so they can make informed decisions about their consumption habits. The project will also provide critical information for brewers and food safety specialist to facilitate new production and inspection standards to ensure the safety of the product.Aim 1a:The project will investigate how degree of roast affects the key chemical attributes of cold brewed coffee including concentration of CGA, concentration of caffeine, total acidity, pH,total antioxidant activity, and flavor profile by analyzing single-source beans processed at three different roasting temperatures: light (180°C - 205°C), medium (210°C - 220°C), and dark (240°C - 250°C).Aim 1b:The project will investigate changes in key chemical attributes that may occur during storage. The analyses in Aim 1 will be repeated after coffees have been stored in either ambient conditions or under pressurized nitrogen for three weeks.Aim 2:The project will investigate the presence, survival, and growth of spoilage microorganisms, specifically Cl. botulinum in both traditional and nitro-infused cold brew coffee during the brewing process and throughout the three week storage period.
Sorghum Biorefining: Integrated Processes for Converting all Sorghum Feedstock Components to Fuels and Co-Products0427783Agricultural Research Service/USDANGHIEM N P10/29/201410/28/2019ACTIVEWYNDMOORSWEET, SORGHUM, GRAIN, SORGHUM, BIOMASS, SORGHUM, ETHANOL, BUTANOL, PLATFORM, CHEMICALS, VALUE-ADDED, CO-PRODUCTS, CELLULOSE, HEMICELLULOSE, LIGNIN, METHANE, BIOREFINERYNot applicable1: Develop technologies that enable the integrated processing of sorghum grains and sweet sorghum juice at existing biofuels production facilities and that enable the commercial production of new co-products at sorghum-based biorefineries. 1A: Develop technologies that enable the integrated processing of sorghum grains at existing biofuels production facilities. 1B: Develop technologies that enable the integrated processing of sweet sorghum juice at existing biofuels production facilities. 1C: Develop technologies that enable the commercial production of new co-products at sorghum-based biorefineries. 2: Develop technologies that enable the commercial production of marketable C5-rich and C6-rich sugar streams from sorghum lignocellulosic components. 2A: Develop technologies that enable the commercial production of marketable C5-rich sugar streams from sorghum lignocellulosic components. 2B: Develop technologies that enable the commercial production of marketable C6-rich sugar streams from sorghum lignocellulosic components. 3: Develop technologies that enable the commercial conversion of sorghum lignocellulosic components into fuels and industrial chemicals. 3A: Develop technologies that enable the commercial production of industrial chemicals from the C5-rich sugar stream obtained from the enzymatic hydrolysis of pretreated sorghum cellulosic components. 3B: Develop technologies that enable the commercial production of additional ethanol and industrial chemicals from the C6-rich sugar stream obtained from the enzymatic hydrolysis of the cellulose-enriched residue. 3C: Develop technologies that enable the use of byproducts and wastes generated in ethanol and other fermentation processes in the sorghum biorefinery for production of energy and chemicals.
Integration of Site-Specific Crop Production Practices and Industrial and Animal Agricultural Byproducts to Improve Agricultural Competitiveness and Sustainability0425032Agricultural Research Service/USDAJENKINS J N10/01/201309/30/2018ACTIVEMISSISSIPPI STATEPRECISION, FARMING, GEOGRAPHIC, INFORMATION, SYSTEM, (GIS), REMOTE, SENSING, (RS), WATER, SWINE, ANIMAL, WASTE, AMMONIA, SOIL, NUTRIENTS, PATHOGEN, NITROGEN, LITTER, LEACHING, CROPS, RUNOFF, BACTERIA, BROILERNot applicableObj 1. Develop ecological and sustainable site-specific agriculture systems, for cotton, corn, wheat, and soybean rotations. 1: Geographical coordinates constitutes necessary and sufficient cornerstone required to define, develop and implement ecological/sustainable agricultural systems. 2: Develop methods of variable-rate manure application based on soil organic matter (SOM), apparent electrical conductivity, elevation, or crop yield maps. 3: Relate SOM, electrical conductivity, and elevation. Obj 2. Develop sustainable and scalable practices for site-specific integration of animal agriculture byproducts to improve food, feed, fiber, and feedstock production systems. 1: Quantify effects of management on sustainability for sweet potato. 2: Balance soil phosphorus (P)/micro¿nutrients using broiler litter/flue gas desulfurization (FGD) gypsum. 3: Effects of site-specific broiler litter applications. 4: Manure application/crop management practices in southern U.S. 5: Compare banded/broadcast litter applications in corn. 6: Develop reflectance algorithms for potassium in wheat. 7: Determine swine mortality compost value in small farm vegetable production. Obj 3. Analyze the economics of production practices for site-specific integration of animal agriculture byproducts to identify practices that are economically sustainable, scalable, and that increase competitiveness and profitability of production systems. 1: Evaluate economics of on-farm resource utilization in the south. Obj 4. Determine the environmental effects in soil, water, and air from site-specific integration of animal agricultural and industrial byproducts into production practices to estimate risks and benefits from byproduct nutrients, microbes, and management practices. 1: Quantitatively determine bioaerosol transport. 2: Role of P and nitrogen (N) immobilizing agents in corn production. 3: Assess impact of management on water sources. 4: Impact of FGD gypsum/rainfall on mobilization of organic carbon/veterinary pharmaceutical compounds in runoff/leached water. 5: Assess soil microbial ecology, antibiotic resistance, and pathogen changes using manure and industrial byproducts in crop production systems. 6: Develop nutrient management practices for sustainable crop production. 7: Develop nutrient management practices for reclaimed coal mine soils. 8: Determine effects of poultry litter/swine lagoon effluent in swine mortality composts. 9: Determine survival of fecal bacterial pathogens on contaminated plant tissue. 10: Identify agricultural/industrial byproducts that modify the breakdown of organic matter. Obj 5. Integrate research data into regional and national databases and statistical models to improve competitiveness and sustainability of farming practices. 1: Develop broiler house emission models. 2: Apply quantitative microbial risk assessment models to animal agriculture/anthropogenic activities. Obj 6. Develop statistical approaches to integrate and analyze large and diverse spatial and temporal geo-referenced data sets derived from crop production systems that include ecological and natural resource based inputs. 1: Develop novel methods of imaging processing.
On-farm Biomass Processing: Towards an Integrated High Solids Transporting/Storing/Processing System (UKRF Subaward No. 3048109826-13-061)0423960Agricultural Research Service/USDAFLYTHE M D07/01/201206/30/2016ACTIVELEXINGTONBIOMASS, SWITCHGRASS, DOE, BIO-ENERGYNot applicable1. Demonstrate and test a universal bio-energy crop single-pass harvesting system applicable to agricultural residues (corn stover, wheat straw), switchgrass, and miscanthus with bale densities at or above 210 kg/m3 with appropriate best management practices for sustainable biomass harvest. 2. Demonstrate the technical feasibility of on-farm storage and processing of high density bio-energy crops to enhance biomass conversion to value added products using a solid substrate fungal cultivation followed by a percolating anaerobic fermentation with recycle. 3. Develop and validate integrated geographic information system (GIS)-based economic and life cycle analysis models for the proposed on-farm processing system, and use these models to evaluate different landscape-scale management scenarios on food and energy production and the environment. Determine the incentives required to increase carbon sequestration and bioenergy production when they conflict with maximum farm profitability.
Innovative Bioresource Management Technologies for Enhanced Environmental Quality and Value Optimization0420348Agricultural Research Service/USDASZOGI A A10/01/201009/30/2015COMPLETEFLORENCEANIMAL, WATER, PHOSPHORUS, TRACE, AMMONIA, DENITRIFICATION, REMOVAL, REDOX, OXYGEN, WETLAND, WASTE, QUALITY, NITROGEN, NITRIFICATION, SOLIDS, POTENTIAL, PLANTS, TREATMENT, CARBON, BIOCHAR, PYROLYSIS, ANAMMOX, GENES, AMENDMENT, FERTILIZER, EMISSIONS, GAS, NITROUS, OXIDENot applicable1. Develop improved treatment technologies to better manage manure from swine, poultry and dairy operations to reduce releases to the environment of odors, pathogens, ammonia, and greenhouse gases as well as to maximize nutrient recovery. 2. Develop renewable energy via thermochemical technologies and practices for improved conversion of manure into heat, power, biofuels, and biochars. 3. Develop guidelines to minimize nitrous oxide emissions from poultry and swine manure-impacted riparian buffers and treatment wetlands. 4. Develop beneficial uses of manure treatment technology byproducts.
VALUE-ADDED PRODUCTS FROM FORAGES AND BIOMASS ENERGY CROPS0408533Agricultural Research Service/USDAWEIMER P J06/04/200406/03/2009COMPLETEMADISONENZYMES, FRACTIONATION, FERMENTATION, ADHESIVES, GLYCOCALYX, HARVESTING, ALFALFA, GERMPLASM, RESIDUES, BIOENERGY, COMPOSITES, VALUE-ADDED, SWITCHGRASSNot applicable1. Develop harvesting, fractionation and storage processes for forages and bioenergy crops that are economical, and that retain product quality. 2. Identify specific varieties of energy crops that display maximum fermentability when grown at specific locations under defined environmental conditions. 3. Develop switchgrass germplasm having broad adaptation to the northern USA and improved fermentability for conversion to value-added products. 4. Develop and improve fermentations for direct bioconversion of cellulosic biomass to value-added products (viz., ethanol, chemical feedstocks and novel bioadhesive components).
VALUE-ADDED PRODUCTS FROM PLANT MATERIALS0402375Agricultural Research Service/USDAWEIMER P J10/01/199906/02/2004COMPLETEMADISONmanures, alfalfa, value added, agricultural engineering, non food commodities, forage legumes, plant enzymes, transgenic plants, fractionation, fermentation, adhesives, energy sources, composites, glycocalyx, filtration, product development, product evaluation, industrial uses, construction materials, phytases, plant fibers, saccharificationNot applicable1. Develop methods for harvesting forages and other cellulosic materials that retain feedstock qualtiy. 2. Develop methods to assess the energy feedstock quality of herbaceous biomass crops. 3. Develop low-cost, user-friendly assessment and processing technologies for biomass producers and processors. 4. Develop varieties of switchgrass adapted to the northern USA. 5. Develop technologies for processing and converting biomass materials to value-added products, including fuels, industrial chemicals, and enzymes.
IMPROVEMENT AND CHARACTERIZATION OF CLOSTRIDIUM BEIJERINCKII BA1010185853National Institute of Food and AgricultureBlaschek, H. P.10/01/200009/30/2006COMPLETEURBANAclostridium beijerinckii, agricultural engineering, corn, non food commodities, strains (genetics), bacterial genetics, genetic markers, aflp, fermentation, processing, butanol, pervaporation, gene cloning, production systems, nutrient transport, sugars, mutants, recombinant dna, bacterial physiology, systems development, viability, production efficiencyCurrently 2.58 billion pounds of butanol is produced in the United States. If this is produced from corn, this would create a market for 509 million bushel of corn annually. Development of such a large corn market would improve economic conditions for farmers. Butanol can be produced from corn by fermentation using Clostridium beijerinckii BA101. We intend to develop superior strains for efficient production of butanol from corn. This project would improve economic conditions of farmers. It is anticipated that newly developed strains would ferment corn efficiently.1. Clostridium beijerinckii BA101 strain development for solvent production. 2. Use of AFLP to identify genetic markers associated with various derivatives of C. beijerinckii 8052. 3. Examination of Non-PTS based sugar transport in C. beijerinckii BA101 and 8052. 4. Physiological characterization of the newly constructed C. beijerinckii mutant and recombinant strains. 5. Downstream processing of butanol from fermentation broth.
Post Harvest Food Safety0184379National Institute of Food and AgricultureAramouni, F.11/01/199912/31/2005COMPLETEMANHATTANmeat, food microbiology, food safety, post harvest, food contamination, pesticide residues, food processing, meat processing, technology transfer, intervention, food quality, knowledge, information dissemination, best management practices, pathogen characterization, sanitation, training, irradiation, heat treatment, fusarium, mycotoxinsPromote a Safe Food Suppy from Production to Consumption.1. The Kansas food and meat processing industry will adopt technologies and intervention strategies that will result in a safer, more wholesome food supply. 2. Industry/commodity groups, meat and food processors, regulatory agencies (FDA, FSIS), and consumer groups will increase knowledge and understanding of food safety principles and practices to support enhancement of their respective roles in assuring a safe, wholesome food supply. 3. Food and meat processing operations will improve microbiological counts as a result of sanitation and HACCP training and implementation.