The Science and Engineering for a Biobased Industry and Economy | 1020193 | RUNGE, TROY | 10/01/2019 | 09/30/2021 | COMPLETE | MADISON | dairy manure, nanocellulose, paper coating | Agriculture faces a challenging future due to soil degradation, water quality, and scarcity problems, and climate change impacts driven by greenhouse gas (GHG) emissions. Concurrently, growing populations will continue to drive food demand and, thus, land and farm productivity. Farmers historically responded to demand increases with expansion and intensification, often at the expense of environmental sustainability. The ongoing shift in livestock-crop systems toward consolidation, compounded by decreases in agricultural land has created local areas of imbalance between the cropping and animal systems. With rapidly depleting ecosystem services, it will be critical to adopt agricultural practices which can meet these demands more sustainably. One practice that is of interest is finding more valuable uses of dairy manure to improve profitability and improve nutrient management.The current value-added uses of dairy manure are largely limited to use biochemical processes such as anaerobic digestion and fermentation to produce biomethane and bioethanol and to use thermochemical processes such as pyrolysis and gasification to produce bio-oil, biochar and combustible gases. Moreover, the biochemical process can only utilize part of cellulose and hemicellulose in dairy manure; while the thermochemical process typically requires high temperature. In general, these processes primarily produce relatively low value-added products such as methane and ethanol. Therefore, there is a critical need for additional research devoted to developing new efficient, economically feasible and environmentally benign approaches to tackle the underutilization problem of dairy manure and help enhance farmer benefits and agricultural sustainability.Dairy manures (undigested and anaerobically digested) are abundant, aggregrated, and low-cost lignocellulosic resources as compared to others like wood. The United States Department of Agriculture (USDA) inventory reported that the number of dairy cows is currently about 9.40 million. In average, dairy cattle can produce about 12 gal of manure per 1000 lb. live weight per day with 14.4 lb. total solids. It was estimated that more than 110 million tons of animal manure are annually produced in the United States. Dairy manure is enriched in cellulose (about 20% - 35%), depending on the diet of cow, separation, process method and conditions of anaerobic digestion if the manure is processed in a digester.Anaerobic digestion systems for dairy farms are growing in popularity across the United States, which can yield a significant mass of cellulose fibers. The anaerobically digested fiber typically contains about 35% cellulose, 9% hemicellulose (xylose, galactose, arabinose and mannose) and 28% lignin, which accounts for approximately 40% of the anaerobic digested effluent total solid.This fiber can be an important low-cost source for value-added products. However, most of the anaerobically digested cellulose fibers is currently underutilized as soil amendment or animal bedding.Previous studies have considered using the carbohydrates in dairy manure to produce monomeric sugars which can be further upgraded into fuel ethanol and other value-added chemicals. However, our studies and others have shown that enzymes can only partially convert cellulose fibers in dairy manure to fermentable sugars due to high levels of ash and lignin both which are enzymatic inhibitors. Instead this research looks to use the cellulose in the manure fibers to produce nanocellulose materials.Nanocellulose materials are nanometer-sized fibers obtained from lignocellulosic biomass obtained from either hydrolysis of cellulose in concentrated acid solution (typically sulfuric or hydrochloric acid) or obtained by mechanical fibrillation of cellulose, or a combination of chemical or enzymatic treatment and mechanical fibrillation of cellulose. Numerous uses for nanocellulose materials have been proposed, including incorporation in fiber-reinforced polymer composites, substrates for flexible electronics and organic solar cells, coatings, membrane systems, and networks for tissue engineering.One of the most promising early uses of nanocellulose materials is in the papermaking industry. These materials may be incorporated as a binder material to improve the strength properties of paper.Nanocellulose can also serve as a renewable and sustainable alternative to synthetic latex and binders in most coating formulation to improve the barrier properties. Finally, cellulose nanofiber can be directly made into cellulose nanopaper, which can surpass ordinary paper in the mechanical, optical and barrier properties and can be used for many high-tech applications such as flexible energy storage and conversion devices, and printed flexible electronics.There is a critical need for additional research devoted to developing new efficient, economically feasible and environmentally benign approaches to tackle the underutilization problem of dairy manure and help enhance farmer benefits and agricultural sustainability. The proposed research will address the underutilization challenge of dairy manure and anaerobically digested dairy manure via effectively extracting nanocellulose products and exploring these materials in paper coating applications. This research will advance the utilization of manure waste generated in an agricultural system and improve sustainable agriculture. | (1) Research and develop technically feasible, economically viable and environmentally sustainable technologies to convert biomass resources into chemicals, energy, materials in a biorefinery methodology including developing co-products to enable greater commercialization potential. |
Water and Nutrient Recycling: A Decision Tool and Synergistic Innovative Technology | 1016509 | Popp, Jennie | 08/01/2018 | 07/31/2025 | ACTIVE | Fayetteville | decision support tool, life cycle assessment, nutrient recycling, water recycling, crop viability | The combination of continued global population growth, with an additional 3 billion people over the next 40 years, and expected intensification of climate variability and resulting variability in reliable water resources requires that water recycling become an integrated part of agricultural water resource management. Further, important nutrients are lost to wastewaters but could be recycled and reused for food production. Absent a concerted effort to recycle these nutrients, the food supply demand will inherently create a less resilient agriculture industry. Water treatment and nutrient needs will vary geographically and based on production. Thus, a user-driven strategy for food production supported by wastewater and nutrient recycling inherently demands not only a systems-based approach, but a flexible decision-making approach. We will study innovative technology for liquid manure wastewater treatment and nutrient recovery within the framework of a decision-making tool that allows technology selection based on region-specific needs for water recycling and food production. The tool will be built upon an economic and life cycle assessment model that guides the user to technology selection based on user-based knowledge of soil chemistry, fertilization needs, crop selection, livestock production, desired level of wastewater treatment, water use, wastewater production, and regulatory requirements. | The overarching goal of this project is to create a decision-support tool that facilitates selection of liquid manure treatment technology based upon local agriculture needs and nutrient balance requirements.The technical innovation goal of this project is to apply robust, membrane-based electrochemical engineering technology, which has been developed and commercialized in the energy sector, to enable manure treatment and water/nutrient recycling for food production.The extension goal of this project is to engage stakeholders in the agricultural community and the water treatment technology industry to develop an understanding of water recycling technologies and the opportunities and challenges to implementation in the agricultural sector for treating liquid manure.Objectives Design and test electrochemical technology for treatment of and nutrient recovery from liquid manure.Study the impacts of recovered water/fertilizer on soil productivity and crop response.Evaluate economic costs and benefits of water treatment technologies related to liquid manure management and crop production.Develop a lifecycle assessment (LCA) model based on three regions: Nebraska, Arkansas, and Missouri.Develop a modular decision-support tool that guides users in water and nutrient recycling technology selection based upon specific regional and farm operational parameters.Engage agricultural and industrial stakeholders nationally on integrating the most locally robust manure treatment technology into agricultural production. |
Improvement of Soil Management Practices and Manure Treatment/Handling Systems of the Southern Coastal Plain | 0431207 | SZOGI A A | 07/27/2016 | 07/05/2021 | ACTIVE | FLORENCE | ANIMAL, AMMONIA, NITROGEN, PLANTS, PYROLYSIS, FERTILIZER, WATER, COVER, CROP, REDUCED, TILLAGE, NITRIFICATION, TREATMENT, ANAMMOX, EMISSIONS, SOIL, MANAGEMENT, DISCARDED, SOILS, SUSTAINABLE, PRODUCTION, PHOSPHORUS, REMOVAL, WASTE, SOLIDS, CARBON, GENES, GAS, PAHTOGEN, MANURE, QUALITY, RESIDUE, BIOCHAR, AMENDMENT, NITROUS, OXIDE | Not applicable | 1. Develop and test improved tillage and biomass management practices to enhance soil health and long-term agricultural productivity in the Southeastern Coastal Plain. 2. Develop manure treatment and handling systems that improve soil health and water quality while minimizing the emissions of greenhouse gases, odors and ammonia and the transport of phosphorus and pathogens. Subobjective 2a. Develop improved treatment systems and methods for ammonia and phosphorus recovery from liquid and solid wastes using gas-permeable membrane technology. Subobjective 2b. Develop improved biological treatment systems for liquid effluents and soils based on deammonification reaction using ARS patented bacterial anammox and high performance nitrifying sludge cultures. Subobjective 2c. Improve the ARS patented â¿¿Quick Washâ¿? process for phosphorus recovery. Subobjective 2d. Assess treatment methods for their ability to reduce or eliminate pathogens and cell-free, microbially-derived DNA from agricultural waste streams. Subobjective 2e. Improved manure treatment and handling systems, and management strategies for minimizing emissions. Subobjective 2f. Assess the impact of manure treatment and handling systems on agricultural ecosystem services for soil, water, and air quality conservation and protection. 3. Develop beneficial uses of agricultural, industrial, and municipal byproducts, including manure. Subobjective 3a. Evaluate application of designer biochars to soils to increase crop yields while improving soil health, increasing carbon sequestration, and reducing greenhouse gas emissions. Subobjective 3b. Develop methods and guidelines to remediate mine soils using designer biochars. Subobjective 3c. Evaluate the agronomic value of byproducts produced from emerging manure and municipal waste treatment technologies. |
Innovative Bioresource Management Technologies for Enhanced Environmental Quality and Value Optimization | 0420348 | SZOGI A A | 10/01/2010 | 09/30/2015 | COMPLETE | FLORENCE | ANIMAL, WATER, PHOSPHORUS, TRACE, AMMONIA, DENITRIFICATION, REMOVAL, REDOX, OXYGEN, WETLAND, WASTE, QUALITY, NITROGEN, NITRIFICATION, SOLIDS, POTENTIAL, PLANTS, TREATMENT, CARBON, BIOCHAR, PYROLYSIS, ANAMMOX, GENES, AMENDMENT, FERTILIZER, EMISSIONS, GAS, NITROUS, OXIDE | Not applicable | 1. Develop improved treatment technologies to better manage manure from swine, poultry and dairy operations to reduce releases to the environment of odors, pathogens, ammonia, and greenhouse gases as well as to maximize nutrient recovery. 2. Develop renewable energy via thermochemical technologies and practices for improved conversion of manure into heat, power, biofuels, and biochars. 3. Develop guidelines to minimize nitrous oxide emissions from poultry and swine manure-impacted riparian buffers and treatment wetlands. 4. Develop beneficial uses of manure treatment technology byproducts. |
BIOLOGICAL TREATMENT OF MANURE AND ORGANIC RESIDUALS TO CAPTURE NUTRIENTS AND TRANSFORM CONTAMINANTS | 0420063 | MULBRY III W W | 04/03/2010 | 04/02/2015 | COMPLETE | BELTSVILLE | SWINE, WASTE, SOIL, POULTRY, MANAGEMENT, DAIRY, EMMISION, MANURE, TREATMENT, ENVIRONMENTAL, BYPRODUCTS, FATE, ORGANIC, BIOENERGY, COMPOST, RESIDUE, DESTRUCTION, NUTRIENTS, APPLICATIONS, ANAEROBIC, DIGESTION, ALGAL, METHANE, AMMONIA, ANTIBIOTIC | Not applicable | Development and evaluation of manure treatment systems. Specific objectives: (1) Develop treatment technologies and management practices to reduce the concentrations of pharmaceutically active compounds (antibiotics and natural hormones) in manures, litters, and biosolids utilized in agricultural settings; (2) Develop management practices and technologies to minimize greenhouse gas (GHG) emissions from manure and litter storage and from composting operations by manipulating the biological, chemical, and physical processes influencing production and release of ammonia and greenhouse gases during composting; (3) Develop technology and management practices that improve the economics and treatment efficiency of anaerobic digestion of animal manures and other organic feedstocks (e.g. food wastes, crops/residues) for waste treatment and energy production. |
INNOVATIVE ANIMAL MANURE TREATMENT TECHNOLOGIES FOR ENHANCED ENVIRONMENTAL QUALITY | 0409671 | SZOGI A A | 04/03/2005 | 04/02/2010 | COMPLETE | FLORENCE | ANIMAL, WASTE, WATER, QUALITY, PHOSPHORUS, NITROGEN, TRACE, ELEMENTS, AMMONIA, NITRIFICATION, DENITRIFICATION, SOLIDS, REMOVAL, WETLANDS, REDOX, POTENTIAL, OXYGEN, BOD, WETLAND, PLANTS | Not applicable | Develop and evaluate environmentally superior technologies to prevent off-farm release of nutrients and to reduce pathogens, odors, and ammonia emissions. Develop information and technologies to enhance or retrofit existing manure treatment systems to help producers meet environmental criteria (nutrients, emissions, and pathogens). Improve and refine constructed natural treatment technologies to effectively manage nutrients including reducing emissions of ammonia and nitrous oxide. Develop and evaluate new and improved technologies that concentrate/sequester nutrients from manures or create value added products including conversion of livestock waste to energy. Evaluate swine wastewater treatment systems that can be used to reduce emissions, manage nutrients, and control pathogens on small farms. Develop cooperative activities as needed to conduct the research. |
DEVELOPMENT OF NEW GENERATION LOW-COST TREATMENT OF AMMONIA TO BENEFIT THE ENVIRONMENT AND PROMOTE SUSTAINABLE LIVESTOCK PRODUCTION | 0408509 | VANOTTI M B | 10/01/2004 | 09/30/2007 | COMPLETE | FLORENCE | ANIMAL, WASTE, TREATMENT, ANNAMMOX, SWINE, MANURE, CAFO, AMMONIA, REMOVAL, AIR, POLLUTION, ENVIRONMENTAL, QUALITY, SUSTAINABLE, LIVESTOCK, PRODUCTION, FARM, WASTE, MANAGEMENT, EMBRAPA, SWINE, AND, POULTRY, MANURE, AND, BY-PRODUCT, UTILIZATION | Not applicable | This project will be conducted to develop new generation, low-cost treatment of animal wastewater based on applications of newly discovered microbial transformations and materials science. The project will involve cooperative work between USDA-ARS and EMBRAPA, Brazil's agricultural research organization, under the Scientific Cooperation Research Program of USDA-Foreign Agricultural Service. Investigators in both countries will conduct research to develop treatment systems based on energy-efficient anaerobic ammonium oxidation (ANAMMOX) process and immobilization technology. The new generation bio-treatment system has the potential to reduce more than four times the operational cost of treatment. Affordable treatment technology will promote sustainable swine production in concentrated areas such as North Carolina and Santa Catalina (Brazil) and help improve the quality of life. |
US Dairy Adoption of Anaerobic Digestion Systems Integrating Multiple Emerging Clean Technologies:Climate, Environmental and Economic Impact | 0230080 | Kruger, Chad | 08/01/2012 | 07/31/2016 | COMPLETE | Pullman | CAFOs, anaerobic digestion, anaerobic digestion systems, biofertilizers, clean water, climate mitigation, dairies, nutrient recovery, pyrolysis, renewable energy, techno-economic evalation, water recovery | Based on considerable preliminary research, we propose that anaerobic digestion (AD) systems are the most effective means for reducing agricultural greenhouse gas (GHG) emissions while also improving air/water quality, nutrient cycling impacts, and farm economics. Our projects goals are to quantify the climate, air, water, nutrient and economic impacts of integrating next generation technologies in AD systems within US animal feeding operations (AFOs), contribute to increased AD adoption rates, and reduce GHG impacts. The project focuses on AD for dairy operations, although lessons learned are readily applicable to feedlot, swine, and poultry operations. We emphasize a systems approach in order to address AFO nutrient and economic concerns while enhancing GHG mitigation. Evidence suggests that addressing these nutrient and economic issues improves marginal returns on investment and could enhance currently poor U.S. AD adoption rates. Successful AD systems will integrate emerging technologies, complementary to AD, which are being developed by the project team through leveraged research: pyrolysis (P), nutrient recovery (NR), and water recovery (WR).<p> Our approach utilizes a multi-disciplinary team to quantify (against baseline) multiple scenarios for AD systems with varying combinations of complementary technology. Analysis against various levels of technology incorporation and farm scenarios will allow us to determine both direct as well as upstream and downstream impacts of a system or technology on total and component (CO2, CH4, N2O) GHG emissions, nutrient and energy flows, project economics, and crop yields. Project outputs will provide accessible technical information to industry, regulatory agencies, and private carbon market entities, overcoming previously identified barriers to new technology adoption. Together, the project will assist US AFOs, rural communities, and the AD industry in adopting improved agricultural waste management and move AFOs from a GHG source to a carbon sink. We will leverage relevant research (completed or ongoing) to complete assigned objectives and tasks, thereby allowing for a wealth of outputs using a relatively short timeline and budget. Specific project objectives include: (1) enhancement of pyrolysis platform through modification of resulting bio-char for nutrient recovery; (2) agronomic evaluation of AD system bio-fertilizer and co-products to determine potential for carbon sequestration, GHG mitigation, and crop yield; (3) GHG emissions, nutrient-flow, and crop yield modeling analysis; (4) techno-economic analysis; and (5) extension of relevant research results to key stakeholders best positioned to facilitate AD system adoption on AFOs. | Project goals are to quantify the climate, air, water, nutrient and economic impacts of integrating emerging, next generation technologies within anaerobic digestion (AD) systems on US animal feeding operations (AFOs), primarily dairies, although lessons learned apply to feedlot, swine, and poultry operations. Systems are emphasized as evidence suggests that addressing AFO concerns regarding nutrients and economics improves marginal returns on investment and could enhance currently poor U.S. AD adoption rates. Successful AD systems will integrate emerging technologies, complementary to AD, which are being developed by the project team through leveraged research: pyrolysis, nutrient recovery, and water recovery. Analysis against various levels of technology incorporation and farm scenarios will allow for determination of both direct as well as upstream and downstream impacts of a system or technology on total and component (CO2, CH4, N2O) greenhouse gas (GHG) emissions, nutrient and energy flows, project economics, and crop yields. Project objectives include: (1) enhancement of pyrolysis platform through modification of bio-char for nutrient recovery; (2) agronomic evaluation of AD system bio-fertilizer and co-products; (3) GHG emissions, nutrient-flow, and crop yield modeling analysis; (4) techno-economic analysis; and (5) extension of relevant research results to key stakeholders. Project outputs will provide accessible technical information to industry, regulatory agencies, and private carbon market entities, overcoming previously identified barriers to new technology adoption. This proposal addresses priority areas related to research and extension for GHG mitigation and carbon sequestration within AFOs for reductions in agricultural emissions while improving sustainable joint use of nitrogen and water. |
Enhancing Greenhouse Gas Mitigation And Economic Viability Of Anaerobic Digestion Systems: Algal Carbon Sequestration And Bioplastics Produc | 0229956 | Feris, Kevin | 09/01/2012 | 08/31/2016 | COMPLETE | Boise | Algae, Anaerobic digestion, Bio-plastics, Bioproducts, Polyhydroxyalkanoates, Process Model, algae, anaerobic digestion, bio-plastics, biogas, bioproducts, carbohydrates, carbon sequestration, greenhouse gas mitigation, polyhydroxyalkanoates, process model | Over 9 million dairy cows generate an estimated 226 billion kg (249 million tons) of wet manure and produce approximately 5.8 billion kg of CO2 equivalents annually in the U.S. (BSSC 2008; Liebrand & Ling 2009). For an average 10,000 head dairy, decomposition of this organic waste produces ?6,000 tons of CH4, 74 tons of N2O, and 130,000 tons of CO2 per year, or ~290,000 tons of CO2 equivalents (USEPA 2011). These emissions constitute approximately 2.5% of the annual production of greenhouse gasses (GHGs) in the United States, and make dairies one of the largest single industry sources of GHG in the US (USEPA 2011). Anaerobic digestion (AD) can significantly reduce dairy GHG emissions by enhancing CH4 generation and capturing and converting CH4 to CO2 in a generator while producing electricity and offsetting farm energy usage. AD biogas could be used to generate >6,800 GWh/yr in power, roughly equivalent to the average annual electricity usage of 500,000 to 600,000 homes (U.S.EPA 2010). Recognizing the potential of ADs to mitigate GHG emissions and produce power, in January 2009, the Innovation Center (IC) for U.S. Dairy announced a voluntary goal to reduce GHG emissions 25% by 2020. Central to achieving this goal is the construction of approximately 1,300 new ADs, which the EPA estimates could reduce U.S. CH4 emissions by 90%. Despite industry support behind broad AD deployment, the on-the-ground reality is that AD projects are not always commercially feasible, due in part to generally low electricity rates. Perhaps more importantly, ADs emit relatively large quantities of GHGs in the form of CO2. Thus, new strategies are necessary to improve AD economics and consequently promote the adoption of AD as a mitigation strategy to achieve the ICs GHG reduction goals. To enhance dairy carbon (C) sequestration, this project will advance a novel integrated manure-to-commodities system that converts pre-fermented manure to bioenergy, sequesters carbon by converting volatile fatty acid (VFA)-rich fermenter supernatant to bioplastics, and sequesters AD effluents (CO2, nitrogen, phosphorus) by producing algae that can be harvested and returned to the AD to enhance PHA production and enhance overall C-sequestration. GHG reduction and C sequestration will be quantified and used to parameterize a system model and web-accessible management decision tool that will be developed at the Idaho National Laboratory. Research product and decision tool dissemination along with workforce and student training will be facilitated by connecting to an on-going, USDA funded outreach and education effort centered on biofuel literacy led by the University of Idaho's McCall Outdoor Science School (MOSS). The outcomes and impacts of this project will include changes in the agricultural knowledge system. Change in knowledge will come from applied research developing a novel approach to GHG reduction and economic development. Change in action will come from experimentally-based information generation and development of data driven decision tools with potential to lead to change in actions by agricultural producers. | We propose a novel strategy that enhances the utility of anaerobic digestion for reducing the greenhouse gas (GHG) footprint of dairy manure management. Additionally, we propose that by producing carbohydrate rich algal biomass and directing the fixed carbon (C) to a longer-term storage pool than biofuels (i.e. PHA-based bioplastics), we can further reduce the GHG footprint. The potential exists to make these systems net C sinks rather than sources, while simultaneously enhancing the overall process economics; thereby improving the likelihood that coupled AD-Algae-PHA systems will be adopted by the dairy industry. Our project objectives and milestones follow: Objective 1: Quantify C flow from manure to CH4 and polyhydroxyalkanoates (PHAs) via a two stage AD system. The goal of this task is to identify critical bioreactor operating conditions that maximize PHA synthesis and CH4 production and optimize carbon sequestration. Milestones/target dates: Manure fermentation potential investigations will be completed within the first 90 days of the project and the fermentation factorial will be completed over the subsequent 12 months. The PHA and AD investigations have been allocated 24 months. Objective 2: Quantify C-capture, characterize C-quality, and quantify nutrient recovery via algal production from AD effluent streams (e.g. gas and liquid). Assess C-sequestration potential of algal biomass as a fermenter feedstock to enhance PHA synthesis. Assess influence of spatial-temporal variability of algal community structure on these processes. Milestones/target dates: The algal cultivation systems will be assembled and baseline conditions determined in the first 6 months. 24 months is allocated for the remaining algal cultivation objectives. Objective 3: Develop and deploy user-friendly web-based management decision tools to quantify and parameterize GHG reduction, C-sequestration, and enhancement of AD commercial viability. Milestones/target dates: The model will be defined and functional specifications and input/output flows established within the first 6 months. Between year 1 and 2 individual sub-models will be wrapped and integrated into the overall process model. By the second year the web interface will be prepared. During the third year the web-based model will be demonstrated to stakeholders and decision-makers. Objectives 4 and 5: Produce the next generation of bio-product innovators and system operators by integrating undergraduate and graduate training and work force development. Develop an outreach and education program targeting dairy managers and AD system operators. Milestones/target dates: Student training will occur throughout the project. Outreach and educational programs will be delivered during years 2 and 3 of the project. Outputs: We will define optimal operating conditions for the AD, PHA, and Algal reactors, quantify carbon sequestration potential of the PHA and algal reactor systems, develop a web-based modeling tool, and train students and system operators. Project results will be communicated via manuscript publication, outreach and educational programs, and interactions with our stakeholder group. |
Accelerated Renewable Energy | 0228524 | MARKLEY, JOHN | 07/15/2012 | 07/14/2017 | COMPLETE | MADISON | Bio-diesel Bio-gas Ethanol, bio-diesel, bio-gas, cellulosic Fertilizer, custom Manure, dairy Polymer separations, economic analysis, ethanol, cellulosic, fertilizer, custom, manure, dairy, polymer separations, precision-ag | A dairy with 1,700 cows produces 15 tons of manure per day. To handle the manure, the dairy must recycle 2.5 million gallons of water per day. The conventional solutions to these problems are wash the manure into a lagoon, dredge and manure solids and haul them to fields. Manure on the fields may not provide the correct nutrients and is subject to running off and polluting rivers. Our goal is to demonstrate the economic feasibility on the scale of a large dairy farm (1,700) cows of converting the manure produced into valuable commodities including methane gas for heating purposes in the farm, fuel ethanol, and custom fertilizer. Part of the farm acreage (5%) will be devoted to oilseed production, which will be converted to biodiesel to power vehicles on the farm. Our approach utilizes biomass processing technology developed by a small Wisconsin business (Soil Net) and engineering and fabrication expertise of another small Wisconsin business (Braun Electric). We foresee a strong potential for commercialization of this technology and its widespread adoption. | We propose a public (University of Wisconsin-Madison) and private (Cottonwood Dairy; Soil Net, LLC; Braun Electric; Resource Engineering Associates, Inc.) collaboration that encompasses both R&D and prototypical farm-based demonstration of the four components of the BRDI FOA: 1. Feedstocks Development: The bioenergy generated will derive primarily from recycled cellulosic components of dairy manure, which have minimal food/fuel issues. 2. Bio-Fuels and Bio-based Products Development: The project will demonstrate/evaluate multiple sub-processes and associated "value added" bio-based co-products -- vegetable oil/meal; oil/biodiesel; cellulosic ethanol; bio-gas/manure digestion; recycled rinse water; low and high P (phosphorus) crop nutrients; and multiple cellulosic manure fiber "fractions" (for mulches, bedding, etc.). 3. Bio-Fuels and Bio-based Products Development Analysis: The project will evaluate (calibrate, implement, validate) economic, environmental, lifecycle, process efficiency, and mass balance analysis and incorporate these into a business decision/management framework. In particular, an analysis of the economics of scale of the various system components will form a major part of the research effort. 4. Use of Oil/Biodiesel for the Production of Grain or Cellulosic Ethanol: The proposed system will be capable of producing oil/biodiesel from vegetable oil seed produced on the farm. Our research will determine the economic benefits of biodiesel vs. purified vegetable oil for direct use in operating farm vehicles and machinery. The expected outcome is the demonstration of cost effective livestock manure separation and processing to produce bio-energy, bio-feedstocks, and value added co-products (mulch/fertilizers) for on-farm and off-farm ("export") markets that can be carried out at a variety of large/medium/small scales. This technology will provide opportunities to exploit readily available, relatively low value potential cellulosic bio-feedstocks-ones that largely avoid food/fuel concerns-to improve economic sustainability: on-farm substitution for purchased energy and feed/fertilizer nutrients or as potential farm revenue diversification; improve environmental sustainability. The approach will reduce GHG/carbon footprint, soil/nutrient losses, and potential manure borne pathogens; and, improve regional economic development. We have shown that a demand exists for many of the manure fiber (mulch/fertilizer) co-products. The flexibility to adopt one (or several) of process/flow components, sequentially, based on the specifics of extant farm infrastructure (manure type/volumes, manure handling/processing, etc.) increases the proposed project's commercialization potential. The extensive process/flow measurement and analysis R&D, at both lab/bench and commercial scale, will provide the analytic/measurement tools to evaluate the economic, environmental, food safety, and regional economic development impacts of this potential commercialization at a variety of resolutions (farm, county, region). |
Measuring and Modeling Gaseous, Particulates, and Odor Emissions from Livestock Operations | 0205501 | Ndegwa, P | 12/01/2009 | 11/30/2014 | COMPLETE | PULLMAN | air quality, ammonia, animal feeding operations, computer models | Over the last two decades, animal feeding operations (AFO's) have become larger and more concentrated in fewer geographical regions. This change in production patterns has resulted in huge volumes of manure in these regions, increasing tremendously the challenges of manure handling, storage, and use without endangering the environment. Air quality degradation presents a serious challenge to the sustainability and continued growth of the livestock industry. The long-term goal of this research initiative is to develop cost-effective technologies and methods to quantify and to mitigate gaseous, odor, and particulate emissions from AFO's. | The overall goal of this project is to develop a process-based model for the prediction of ammonia emissions from typical anaerobic lagoons or similar structures that hold or treat dairy wastewater. Specific objectives are: Develop a sub-model for the convective mass transfer of ammonia from dairy wastewater; Develop a sub-model for dissociation constant of ammonia in dairy wastewater; Conduct direct measurement of ammonia emissions from typical dairy wastewater lagoons; Perform validation of the process model in predicting ammonia emissions from anaerobic lagoons that treat dairy wastewaters; Perform sensitivity analyses to determine most critical parameters for ammonia emissions mitigation; Develop a user friendly computer interface for ammonia emissions model for dissemination to end-users |
Reducing the Environmental Impact of Food Animal Production | 0185866 | Classen, J | 10/01/2012 | 09/30/2017 | COMPLETE | RALEIGH | animal production, manure management, resource recovery, sustainability, systems analysis | Demand for food and especially for animal products is expected to double in the coming decades due to population increases and expected higher living standards of parts of the world. Resources needed to produce these products are under increasing stress imposing limits on soil, water, nutrients and energy availability and quality. At the same time, public interest in how our food animals are raised is also increasing, with questions about food safety, animal welfare, organic methods, environmental pollution, costs, and jobs. Potential benefits of recent and current research have not been fully integrated into stakeholder tools because of the complex interactions of the production systems, management systems, and social systems in which they function. This project will not only continue to develop the needed tools and techniques but will also work to integrate the results of these tools with existing tools to generate meaningful options with expected impacts on production, emissions, and resource consumption. Results will be useful to the general public's understanding of our food system as well as to policy makers and producers asking questions about what technologies are available, what will happen if a specific technology or mix of technologies is implemented. | The goal of this project is to develop tools that will help the food animal production industry reduce adverse ecological impacts, improve sustainability, and increase productivity. Specific objectives are to: 1. Develop, evaluate, and optimize processes and systems to reduce resource use, increase recovery of renewable products, and quantify tradeoffs in economic and social sustainability. 2. Define significant gaps in knowledge that limit our ability to identify economically, environmentally, and socially optimal food animal production and waste management systems. 3. Develop preliminary models of the swine and poultry industries that facilitate understanding of the interactions between livestock production, natural resource use, environmental and ecological variables, economic indicators and societal concerns to sustainably meet the future demands for animal products. |