Saved Search "manure management"

Search these terms...
Search in these fields...
Show these fields in the results...
View results as:   Document   Tabular (* always hidden in tabular view)
↔ Hide Filters  Filter Chooser
↔ Show Filters 
 Project Title Accession Number Sponsoring Agency Project Director Project Start Date Project End Date Project Status Recipient City Name Keywords Non-Technical Summary Objectives
Water and Nutrient Recycling: A Decision Tool and Synergistic Innovative Technology1016509National Institute of Food and AgriculturePopp, Jennie08/01/201807/31/2025ACTIVEFayettevilledecision support tool, life cycle assessment, nutrient recycling, water recycling, crop viabilityThe combination of continued global population growth, with an additional 3 billion people over the next 40 years, and expected intensification of climate variability and resulting variability in reliable water resources requires that water recycling become an integrated part of agricultural water resource management. Further, important nutrients are lost to wastewaters but could be recycled and reused for food production. Absent a concerted effort to recycle these nutrients, the food supply demand will inherently create a less resilient agriculture industry. Water treatment and nutrient needs will vary geographically and based on production. Thus, a user-driven strategy for food production supported by wastewater and nutrient recycling inherently demands not only a systems-based approach, but a flexible decision-making approach. We will study innovative technology for liquid manure wastewater treatment and nutrient recovery within the framework of a decision-making tool that allows technology selection based on region-specific needs for water recycling and food production. The tool will be built upon an economic and life cycle assessment model that guides the user to technology selection based on user-based knowledge of soil chemistry, fertilization needs, crop selection, livestock production, desired level of wastewater treatment, water use, wastewater production, and regulatory requirements.The overarching goal of this project is to create a decision-support tool that facilitates selection of liquid manure treatment technology based upon local agriculture needs and nutrient balance requirements.The technical innovation goal of this project is to apply robust, membrane-based electrochemical engineering technology, which has been developed and commercialized in the energy sector, to enable manure treatment and water/nutrient recycling for food production.The extension goal of this project is to engage stakeholders in the agricultural community and the water treatment technology industry to develop an understanding of water recycling technologies and the opportunities and challenges to implementation in the agricultural sector for treating liquid manure.Objectives Design and test electrochemical technology for treatment of and nutrient recovery from liquid manure.Study the impacts of recovered water/fertilizer on soil productivity and crop response.Evaluate economic costs and benefits of water treatment technologies related to liquid manure management and crop production.Develop a lifecycle assessment (LCA) model based on three regions: Nebraska, Arkansas, and Missouri.Develop a modular decision-support tool that guides users in water and nutrient recycling technology selection based upon specific regional and farm operational parameters.Engage agricultural and industrial stakeholders nationally on integrating the most locally robust manure treatment technology into agricultural production.
Nitrite Ammonification in Manures and Soils Under Adaptive Management for Climate Change1009145National Institute of Food and AgricultureBruns, Maryann04/01/201603/31/2020COMPLETEUniversity ParkNitrous oxide, cropping systems, denitrification, greenhouse gas, no-till, DNRAAgriculture accounts for 75-80% of anthropogenic nitrous oxide (N2O) emissions in the U.S. Denitrification in fertilized soils and during animal waste handling results in about 60% and 30% of N2O emissions, respectively. This proposal aims to gain knowledge of how soils and manures can be managed to counteract denitrification and to promote a bacterial process known as nitrite ammonification, the end product of which (ammonium) is not lost directly to the atmosphere. We hypothesize that nitrite ammonification occurs to a significant extent in soils managed using no-till practices and labile carbon amendments, either with animal or green manures. Particularly in combination, these practices increase labile soil carbon content and improve soil water-holding capacity, and they are being adopted by farmers in response to more variable and extreme weather resulting from climate change. Innovative soil management, such as manure injection currently evaluated at Penn State's Sustainable Dairy Cropping Systems project, minimizes disturbance during carbon enrichment and needs to be assessed for its effect on denitrification and nitrite ammonification. Moreover, manure storage and handling practices favoring nitrite ammonification over denitrification need to be identified. Specific objectives of this proposal are to 1) measure bacterial groups and labile carbon substrates in manures from dairies of varying size and manure handling systems; 2) measure GHGs and temporal and spatial changes in nitrite ammonification and denitrification in no-till soils of the Sustainable Dairy Cropping Systems project; 3) conduct soil mesocosm studies to determine relationships between substrates, physicochemical conditions, microbial processes, and GHGs to understand conditions favoring nitrite ammonification over denitrification.The overarching goal of this project is identify manure and soil management practices that help reduce agriculture's contributions to greenhouse gases (GHGs), particularly nitrous oxide (N2O). Currently agriculture contributes 75-80% of anthropogenic N2O emissions in the United States, with fertilized soils and livestock wastes contributing about 60% and 30% of that total. Efforts to reduce these emissions have high priority because the global warming potential of N2O is nearly 300 times that of CO2. Incomplete denitrification is considered to be the major source of N2O in agriculture, with nitrification a secondary contributor. No-till soils are particularly susceptible to denitrification losses of N2O when soils are recently fertilized and wet. It is paradoxical, therefore, that higher N2O emissions occur when farmers apply conservation tillage practices intended to make soils more resilient to climate change. Denitrification, however, is not the only nitrate (NO3-) conversion pathway that bacteria carry out under O2-depleted conditions. Some bacteria can instead reduce NO3- and/or nitrite (NO2-) to ammonium (NH4+) without N2O as an intermediate. This process, known either as nitrate/nitrite ammonification (NA) or dissimilatory nitrate reduction to ammonium (DNRA), results in an end product (NH4+) that is retained in the soil rather than lost to the atmosphere. Recent advances in molecular detection of nitrate/nitrite-ammonifying (NA) bacteria indicate their surprisingly high genetic diversity and widespread distribution in the environment. Indeed, many enteric bacteria present in animal wastes (e.g., E. coli) are known to be nitrate/nitrite ammonifiers. In this proposal, we aim to address the question, "Can we use NA to avoid the tradeoff of higher N2O emissions from systems employing soil, water, and nutrient conservation practices?"The main goals of this proposal are to 1) obtain basic knowledge about NA bacteria in manures and soils; 2) identify conditions and management practices affecting NA activity in C-enriched soils; and 3) evaluate net global warming potentials of NA-conducive practices. Specifically, this proposal focuses on NA bacterial groups and their responses to chemical status and physical conditions in dairy wastes and field soils at Pennsylvania State University's Sustainable Dairy Cropping System project (SDCS) funded by NESARE (Northeast Sustainable Agricultural Research and Education) program. The SDCS is one of the greenhouse gas (GHG) monitoring sites participating in the USDA-CAP network, Climate Change Mitigation and Adaptation in Dairy Production Systems in the Great Lakes Region (WI, NY, and PA). At the SDCS, no-till practices are combined with low-disturbance carbon (C) amendment of soils using dairy wastes and/or perennials or cover crops, which are important sources of organic matter in climate-adaptive farming.Specific objectives of this project are to:1) Characterize NA bacteria in manures from diverse dairies. Measure the abundance and characterize groups of nitrate/nitrite ammonifiers and denitrifiers in manures from the SDCS and other private dairies which employ varied manure storage and handling procedures. Assess relationships between bacterial groups and manure composition, pH, redox, age, and storage practices. Determine conditions enabling NA activity in laboratory mesocosms using varying combinations of electron donors and electron acceptors and measure relative activities of nitrate-nitrite ammonifiers and denitrifiers.2) Measure soil properties and gas fluxes (N2O, CH4, NH3, CO2) in SDSC. Carry out spatially and temporally intensive sampling of soil properties (including pH and redox) and GHG fluxes from SDSC plots (comparing broadcast- and injected manure, with and without cover crops), and link these measurements to expression levels of bacterial genes for key N transformations in relation to surface residues and manure injection sites.3) Assess NA and denitrification activities in soil mesocosms under varied conditions. Conduct controlled studies with diverse soils amended with manures, stable-isotope labeled nitrate, and specific organic substrates in laboratory mesocosms. These experiments will be used to evaluate application methods and determine relationships between gas fluxes, C additions, and incubation conditions.
Algae for conversion of manure nutrients to animal feed: Evaluation of advanced nutritional value, toxicity, and zoonotic pathogens1000956National Institute of Food and AgricultureMurinda, Shelton09/01/201308/31/2017COMPLETEPomonaAlgae, Animal Feed, Bacteria, Manure, Nutritional Value, Pathogens, Toxic CyanobacteriaRationale The need to control manure-derived nutrient pollution is straining the confined animal production industry. California is the top milk producing state and has some of the strictest nutrient regulations. But in the San Joaquin Valley, many dairies do not have affordable access to more land for manure application. A highly productive crop is needed that will convert manure nitrogen (N) and phosphate (P) into feed but in smaller land areas than crops such as corn. Algae are a candidate feed with annual yields typically 7-13 times greater than soy or corn. Beyond 40-50% protein, algae also contain fatty acids, amino acids, pigments, and vitamins that are valuable in animal feeds, especially for adding value to milk. Advances in molecular biology allow us to gather needed information on the risks and benefits of algae-based animal feeds. Overall goal Benefit animal agriculture and the environment by introducing microalgae as a fast-growing livestock feed crop. Aim 1 Cultivate algae in dairy freestall barn flush water, treating this wastewater, while producing algae feedstock at a high annual rate, at least 10-times greater than corn. Algae will be cultivated in 30-cm deep raceway ponds at the 300-head Cal Poly campus dairy farm where extensive manure management research already occurs under USDA and USEPA sponsorship. Aim 2 Produce algae with favorable nutritional characteristics (high digestibility, valuable fatty and amino acid profiles, balanced protein and carbohydrate concentration, etc.) by adjusting the treated-water recycling into the ponds to optimize the N concentration in the growth medium. Aim 3 Test pathogen survival in algae feeds prepared by pasteurization and/or drying and heating. A trend in municipal wastewater treatment is pasteurization of treated effluent using waste heat from natural gas electrical generator. Large dairies with digesters will have waste heat available for pasteurization and drying. High-protein algae will be pelletized with high carbohydrate feeds to create a balanced feed. The heat of pelletization also contributes to pasteurization. Cal Poly has a research feed mill for producing such blended feeds. Aim 4 Monitor contamination by cyanobacteria and any cyanobacterial toxins. Approach Removal of N, P, and other constituents will be optimized in influent and effluent of identical ponds. Algal biomass (harvested by bioflocculation+settling) will be analyzed for N, P, protein, carbohydrates, and profiles of fatty and amino acids. Pathogen and algal communities extant in raw and feed-processed algal biomass will be analyzed using metagenomics and pyrosequencing. Potential toxicity of algal biomass will be studied using toxicity evaluation of cell-free extracts on cultured mammalian cells. A TC 20 Cell counter (BioRad Laboratories) will be used to monitor toxicity events on treated cells using trypan blue staining. Cytotoxic positive samples will be tested for both presence and concentration of known cyanobacterial toxins. The researchers have decades' experience in algae production, wastewater treatment, and food safety. Expected outcomes Starting with dairy, the project will lead the way towards an algae feed industry based on advanced nutritional features to enhance agricultural products (e.g., milk protein, poultry pigment) while assisting farmers to meet manure management challenges. We will address topics rarely covered in the algae field: potential toxicity and zoonotic pathogens. Our approach is unique in that it integrates and addresses a triad of issues, namely, food safety issues along with algae production techniques and waste management. Project Goals 1. Generate experimental field data and calibrate optimization models. For treatment, expected removals are 85-95% biochemical oxygen demand and soluble Nitrogen (N) and 40-80% solublePhosphate (P) removal, depending on culturing technique and season. 2. Maximize the nutritional value of produced algae for animal feed. The cultures will be optimized to produce biomass at a high rate while also having the highest value composition for feed (in terms of lipids, digestibility, essential fatty and amino acid profiles, including balanced protein and carbohydrate concentrations). 3. Optimize pathogen inactivation methods. Pathogens will die-off in the ponds and during disinfection processing of the harvested biomass. Inactivation rates for representative pathogen indicators will be determined under various algae cultivation conditions and during trials with several biomass disinfection techniques. The optimal combination of pond conditions (e.g., high pH) and biomass processing (e.g., pasteurization) will be determined to achieve needed log inactivation of pathogens, which is typically 1- >4 log10 reduction (Sobsey et al., Available Online). 4. Quantify and control any cyanobacterial toxins. qPCR assays described by Al-Tarineh et al. (2012 a and b) will be used and optimized to reliably determine the copy number of cyanotoxin biosynthesis genes, as well as an internal cyanobacteria 16S rDNA control, in a single reaction. The latter detects for presence of cyanobacteria. If toxins are detected, measures will be taken to control invasion of the ponds by cyanotoxin-producing cyanobacteria strains. Overall Goal Benefit agriculture and the environment by introducing microalgae, a fast-growing livestock feed crop.
Improvement of Soil Management Practices and Manure Treatment/Handling Systems of the Southern Coastal Plain0431207Agricultural Research Service/USDASZOGI A A07/27/201607/05/2021ACTIVEFLORENCEANIMAL, AMMONIA, NITROGEN, PLANTS, PYROLYSIS, FERTILIZER, WATER, COVER, CROP, REDUCED, TILLAGE, NITRIFICATION, TREATMENT, ANAMMOX, EMISSIONS, SOIL, MANAGEMENT, DISCARDED, SOILS, SUSTAINABLE, PRODUCTION, PHOSPHORUS, REMOVAL, WASTE, SOLIDS, CARBON, GENES, GAS, PAHTOGEN, MANURE, QUALITY, RESIDUE, BIOCHAR, AMENDMENT, NITROUS, OXIDENot applicable1. Develop and test improved tillage and biomass management practices to enhance soil health and long-term agricultural productivity in the Southeastern Coastal Plain. 2. Develop manure treatment and handling systems that improve soil health and water quality while minimizing the emissions of greenhouse gases, odors and ammonia and the transport of phosphorus and pathogens. Subobjective 2a. Develop improved treatment systems and methods for ammonia and phosphorus recovery from liquid and solid wastes using gas-permeable membrane technology. Subobjective 2b. Develop improved biological treatment systems for liquid effluents and soils based on deammonification reaction using ARS patented bacterial anammox and high performance nitrifying sludge cultures. Subobjective 2c. Improve the ARS patented â¿¿Quick Washâ¿? process for phosphorus recovery. Subobjective 2d. Assess treatment methods for their ability to reduce or eliminate pathogens and cell-free, microbially-derived DNA from agricultural waste streams. Subobjective 2e. Improved manure treatment and handling systems, and management strategies for minimizing emissions. Subobjective 2f. Assess the impact of manure treatment and handling systems on agricultural ecosystem services for soil, water, and air quality conservation and protection. 3. Develop beneficial uses of agricultural, industrial, and municipal byproducts, including manure. Subobjective 3a. Evaluate application of designer biochars to soils to increase crop yields while improving soil health, increasing carbon sequestration, and reducing greenhouse gas emissions. Subobjective 3b. Develop methods and guidelines to remediate mine soils using designer biochars. Subobjective 3c. Evaluate the agronomic value of byproducts produced from emerging manure and municipal waste treatment technologies.
Integration of Site-Specific Crop Production Practices and Industrial and Animal Agricultural Byproducts to Improve Agricultural Competitiveness and Sustainability0425032Agricultural Research Service/USDAJENKINS J N10/01/201309/30/2018ACTIVEMISSISSIPPI STATEPRECISION, FARMING, GEOGRAPHIC, INFORMATION, SYSTEM, (GIS), REMOTE, SENSING, (RS), WATER, SWINE, ANIMAL, WASTE, AMMONIA, SOIL, NUTRIENTS, PATHOGEN, NITROGEN, LITTER, LEACHING, CROPS, RUNOFF, BACTERIA, BROILERNot applicableObj 1. Develop ecological and sustainable site-specific agriculture systems, for cotton, corn, wheat, and soybean rotations. 1: Geographical coordinates constitutes necessary and sufficient cornerstone required to define, develop and implement ecological/sustainable agricultural systems. 2: Develop methods of variable-rate manure application based on soil organic matter (SOM), apparent electrical conductivity, elevation, or crop yield maps. 3: Relate SOM, electrical conductivity, and elevation. Obj 2. Develop sustainable and scalable practices for site-specific integration of animal agriculture byproducts to improve food, feed, fiber, and feedstock production systems. 1: Quantify effects of management on sustainability for sweet potato. 2: Balance soil phosphorus (P)/micro¿nutrients using broiler litter/flue gas desulfurization (FGD) gypsum. 3: Effects of site-specific broiler litter applications. 4: Manure application/crop management practices in southern U.S. 5: Compare banded/broadcast litter applications in corn. 6: Develop reflectance algorithms for potassium in wheat. 7: Determine swine mortality compost value in small farm vegetable production. Obj 3. Analyze the economics of production practices for site-specific integration of animal agriculture byproducts to identify practices that are economically sustainable, scalable, and that increase competitiveness and profitability of production systems. 1: Evaluate economics of on-farm resource utilization in the south. Obj 4. Determine the environmental effects in soil, water, and air from site-specific integration of animal agricultural and industrial byproducts into production practices to estimate risks and benefits from byproduct nutrients, microbes, and management practices. 1: Quantitatively determine bioaerosol transport. 2: Role of P and nitrogen (N) immobilizing agents in corn production. 3: Assess impact of management on water sources. 4: Impact of FGD gypsum/rainfall on mobilization of organic carbon/veterinary pharmaceutical compounds in runoff/leached water. 5: Assess soil microbial ecology, antibiotic resistance, and pathogen changes using manure and industrial byproducts in crop production systems. 6: Develop nutrient management practices for sustainable crop production. 7: Develop nutrient management practices for reclaimed coal mine soils. 8: Determine effects of poultry litter/swine lagoon effluent in swine mortality composts. 9: Determine survival of fecal bacterial pathogens on contaminated plant tissue. 10: Identify agricultural/industrial byproducts that modify the breakdown of organic matter. Obj 5. Integrate research data into regional and national databases and statistical models to improve competitiveness and sustainability of farming practices. 1: Develop broiler house emission models. 2: Apply quantitative microbial risk assessment models to animal agriculture/anthropogenic activities. Obj 6. Develop statistical approaches to integrate and analyze large and diverse spatial and temporal geo-referenced data sets derived from crop production systems that include ecological and natural resource based inputs. 1: Develop novel methods of imaging processing.
Efficient Management and Use of Animal Manure to Protect Human Health and Environmental Quality0420394Agricultural Research Service/USDASISTANI K R10/01/201009/30/2015COMPLETEBOWLING GREENANIMAL, MANURE, ODOR, NUTRIENT, BYPRODUCT, ATMOSPHERIC, EMISSIONS, KARST, TOPOGRAPHY, PATHOGEN, TREATMENT, TECHNOLOGY, MICROORGANISMSNot applicableThe overall goal of the research project which is formulated as a real partnership between ARS and Western Kentucky University (WKU) is to conduct cost effective and problem solving research associated with animal waste management. The research will evaluate management practices and treatment strategies that protect water quality, reduce atmospheric emissions, and control pathogens at the animal production facilities, manure storage areas, and field application sites, particularly for the karst topography. This Project Plan is a unique situation in the sense that non-ARS scientists from WKU are included on an in-house project to conduct research under the NP 214. The objectives and related specific sub-objectives for the next 5 years are organized according to the Components (Nutrient, Emission, Pathogen, and Byproduct) of the NP 214, which mostly apply to this project as follows: 1) develop improved best management practices, application technologies, and decision support systems for poultry and livestock manure used in crop production; 2) develop methods to identify and quantify emissions, from poultry, dairy and swine rearing operations and manure applied lands; 3) reduce ammonia, odors, microorganisms and particulate emissions from dairy, swine and poultry operations through the use of treatment systems (e.g. biofilters and scrubbers) and innovative management practices; 4) perform runoff and leaching experiments on a variety of soils amended with dairy, swine, or poultry manures infected with Campylobacter jejuni (C. jejuni), Salmonella sp. or Mycobacterium avium subsp. paratuberculosis (MAP) and compare observed transport with that observed for common indicator organisms such as E. coli, enterococci, and Bacteriodes; and 5) use molecular-based methodologies to quantify the occurrence of pathogens and evaluate new methods to inhibit their survival and transport in soil, water, and waste treatment systems.
Innovative Bioresource Management Technologies for Enhanced Environmental Quality and Value Optimization0420348Agricultural Research Service/USDASZOGI A A10/01/201009/30/2015COMPLETEFLORENCEANIMAL, WATER, PHOSPHORUS, TRACE, AMMONIA, DENITRIFICATION, REMOVAL, REDOX, OXYGEN, WETLAND, WASTE, QUALITY, NITROGEN, NITRIFICATION, SOLIDS, POTENTIAL, PLANTS, TREATMENT, CARBON, BIOCHAR, PYROLYSIS, ANAMMOX, GENES, AMENDMENT, FERTILIZER, EMISSIONS, GAS, NITROUS, OXIDENot applicable1. Develop improved treatment technologies to better manage manure from swine, poultry and dairy operations to reduce releases to the environment of odors, pathogens, ammonia, and greenhouse gases as well as to maximize nutrient recovery. 2. Develop renewable energy via thermochemical technologies and practices for improved conversion of manure into heat, power, biofuels, and biochars. 3. Develop guidelines to minimize nitrous oxide emissions from poultry and swine manure-impacted riparian buffers and treatment wetlands. 4. Develop beneficial uses of manure treatment technology byproducts.
BIOLOGICAL TREATMENT OF MANURE AND ORGANIC RESIDUALS TO CAPTURE NUTRIENTS AND TRANSFORM CONTAMINANTS0420063Agricultural Research Service/USDAMULBRY III W W04/03/201004/02/2015COMPLETEBELTSVILLESWINE, WASTE, SOIL, POULTRY, MANAGEMENT, DAIRY, EMMISION, MANURE, TREATMENT, ENVIRONMENTAL, BYPRODUCTS, FATE, ORGANIC, BIOENERGY, COMPOST, RESIDUE, DESTRUCTION, NUTRIENTS, APPLICATIONS, ANAEROBIC, DIGESTION, ALGAL, METHANE, AMMONIA, ANTIBIOTICNot applicableDevelopment and evaluation of manure treatment systems. Specific objectives: (1) Develop treatment technologies and management practices to reduce the concentrations of pharmaceutically active compounds (antibiotics and natural hormones) in manures, litters, and biosolids utilized in agricultural settings; (2) Develop management practices and technologies to minimize greenhouse gas (GHG) emissions from manure and litter storage and from composting operations by manipulating the biological, chemical, and physical processes influencing production and release of ammonia and greenhouse gases during composting; (3) Develop technology and management practices that improve the economics and treatment efficiency of anaerobic digestion of animal manures and other organic feedstocks (e.g. food wastes, crops/residues) for waste treatment and energy production.
DEVELOPING ANALYTICAL AND MANAGEMENT STRATEGIES TO IMPROVE CROP UTILIZATION OF .... AND REDUCE LOSSES TO THE ENVIRONMENT0420031Agricultural Research Service/USDADAO T H04/03/201004/02/2015COMPLETEBELTSVILLEMANURE, NUTRIENTS, ENVIRONMENTAL, FATE, AND, TRANSPORT, PHOSPHORUS, BIOTRANSFORMATIONS, PHOSPHORUS, REALTIME, SENSING, NITROGEN, MANAGEMENT, NUTRIENT, SENSORS, PRECISION, MANAGEMENT, BIOENERGY, BYPRODUCTS, CARBON, SEQUESTRATION, ALGORITHMS, DECISION-AID, TOOLSNot applicable1. Develop practices to enhance the beneficial use of manure nutrients and reduce offsite losses through management of the environmental fate and transport of organic carbon, nitrogen, and phosphorus derived from poultry, dairy, and beef cattle manures. 2. Develop integrated crop, soil, and dairy/beef/poultry manure management strategies to improve nutrient utilization and minimize leaching and runoff losses.
METABOLIC VARIABLES AFFECTING THE EFFICACY, SAFETY, AND FATE OF AGRICULTURAL CHEMICALS0410345Agricultural Research Service/USDASMITH D J02/03/200602/02/2011COMPLETEFARGORESIDUE, CHEMICAL, FOOD, ANIMAL, DETECTION, METABOLISM, PATHOGEN, SOIL, MANURE, COMPOST, WATERNot applicableObjective 1: Determine metabolic variables (rates of absorption, tissue and microbial biotransformation, excretion) that positively or negatively influence the practical use of novel pre-harvest food safety chemicals in food animals. Objective 2: Determine the fate of endogenous animal hormones, novel pre-harvest food safety compounds, and antibiotics in animal wastes, including their transport through soil and water, and develop intervention strategies that reduce their environmental impact. Objective 3: Develop sensitive and accurate analytical tools to rapidly detect and quantify agriculturally important chemicals studied under objectives 1 and 2.
INNOVATIVE ANIMAL MANURE TREATMENT TECHNOLOGIES FOR ENHANCED ENVIRONMENTAL QUALITY0409671Agricultural Research Service/USDASZOGI A A04/03/200504/02/2010COMPLETEFLORENCEANIMAL, WASTE, WATER, QUALITY, PHOSPHORUS, NITROGEN, TRACE, ELEMENTS, AMMONIA, NITRIFICATION, DENITRIFICATION, SOLIDS, REMOVAL, WETLANDS, REDOX, POTENTIAL, OXYGEN, BOD, WETLAND, PLANTSNot applicableDevelop and evaluate environmentally superior technologies to prevent off-farm release of nutrients and to reduce pathogens, odors, and ammonia emissions. Develop information and technologies to enhance or retrofit existing manure treatment systems to help producers meet environmental criteria (nutrients, emissions, and pathogens). Improve and refine constructed natural treatment technologies to effectively manage nutrients including reducing emissions of ammonia and nitrous oxide. Develop and evaluate new and improved technologies that concentrate/sequester nutrients from manures or create value added products including conversion of livestock waste to energy. Evaluate swine wastewater treatment systems that can be used to reduce emissions, manage nutrients, and control pathogens on small farms. Develop cooperative activities as needed to conduct the research.
Enhancing Greenhouse Gas Mitigation And Economic Viability Of Anaerobic Digestion Systems: Algal Carbon Sequestration And Bioplastics Produc0229956National Institute of Food and AgricultureFeris, Kevin09/01/201208/31/2016COMPLETEBoiseAlgae, Anaerobic digestion, Bio-plastics, Bioproducts, Polyhydroxyalkanoates, Process Model, algae, anaerobic digestion, bio-plastics, biogas, bioproducts, carbohydrates, carbon sequestration, greenhouse gas mitigation, polyhydroxyalkanoates, process modelOver 9 million dairy cows generate an estimated 226 billion kg (249 million tons) of wet manure and produce approximately 5.8 billion kg of CO2 equivalents annually in the U.S. (BSSC 2008; Liebrand & Ling 2009). For an average 10,000 head dairy, decomposition of this organic waste produces ?6,000 tons of CH4, 74 tons of N2O, and 130,000 tons of CO2 per year, or ~290,000 tons of CO2 equivalents (USEPA 2011). These emissions constitute approximately 2.5% of the annual production of greenhouse gasses (GHGs) in the United States, and make dairies one of the largest single industry sources of GHG in the US (USEPA 2011). Anaerobic digestion (AD) can significantly reduce dairy GHG emissions by enhancing CH4 generation and capturing and converting CH4 to CO2 in a generator while producing electricity and offsetting farm energy usage. AD biogas could be used to generate >6,800 GWh/yr in power, roughly equivalent to the average annual electricity usage of 500,000 to 600,000 homes (U.S.EPA 2010). Recognizing the potential of ADs to mitigate GHG emissions and produce power, in January 2009, the Innovation Center (IC) for U.S. Dairy announced a voluntary goal to reduce GHG emissions 25% by 2020. Central to achieving this goal is the construction of approximately 1,300 new ADs, which the EPA estimates could reduce U.S. CH4 emissions by 90%. Despite industry support behind broad AD deployment, the on-the-ground reality is that AD projects are not always commercially feasible, due in part to generally low electricity rates. Perhaps more importantly, ADs emit relatively large quantities of GHGs in the form of CO2. Thus, new strategies are necessary to improve AD economics and consequently promote the adoption of AD as a mitigation strategy to achieve the ICs GHG reduction goals. To enhance dairy carbon (C) sequestration, this project will advance a novel integrated manure-to-commodities system that converts pre-fermented manure to bioenergy, sequesters carbon by converting volatile fatty acid (VFA)-rich fermenter supernatant to bioplastics, and sequesters AD effluents (CO2, nitrogen, phosphorus) by producing algae that can be harvested and returned to the AD to enhance PHA production and enhance overall C-sequestration. GHG reduction and C sequestration will be quantified and used to parameterize a system model and web-accessible management decision tool that will be developed at the Idaho National Laboratory. Research product and decision tool dissemination along with workforce and student training will be facilitated by connecting to an on-going, USDA funded outreach and education effort centered on biofuel literacy led by the University of Idaho's McCall Outdoor Science School (MOSS). The outcomes and impacts of this project will include changes in the agricultural knowledge system. Change in knowledge will come from applied research developing a novel approach to GHG reduction and economic development. Change in action will come from experimentally-based information generation and development of data driven decision tools with potential to lead to change in actions by agricultural producers.We propose a novel strategy that enhances the utility of anaerobic digestion for reducing the greenhouse gas (GHG) footprint of dairy manure management. Additionally, we propose that by producing carbohydrate rich algal biomass and directing the fixed carbon (C) to a longer-term storage pool than biofuels (i.e. PHA-based bioplastics), we can further reduce the GHG footprint. The potential exists to make these systems net C sinks rather than sources, while simultaneously enhancing the overall process economics; thereby improving the likelihood that coupled AD-Algae-PHA systems will be adopted by the dairy industry. Our project objectives and milestones follow: Objective 1: Quantify C flow from manure to CH4 and polyhydroxyalkanoates (PHAs) via a two stage AD system. The goal of this task is to identify critical bioreactor operating conditions that maximize PHA synthesis and CH4 production and optimize carbon sequestration. Milestones/target dates: Manure fermentation potential investigations will be completed within the first 90 days of the project and the fermentation factorial will be completed over the subsequent 12 months. The PHA and AD investigations have been allocated 24 months. Objective 2: Quantify C-capture, characterize C-quality, and quantify nutrient recovery via algal production from AD effluent streams (e.g. gas and liquid). Assess C-sequestration potential of algal biomass as a fermenter feedstock to enhance PHA synthesis. Assess influence of spatial-temporal variability of algal community structure on these processes. Milestones/target dates: The algal cultivation systems will be assembled and baseline conditions determined in the first 6 months. 24 months is allocated for the remaining algal cultivation objectives. Objective 3: Develop and deploy user-friendly web-based management decision tools to quantify and parameterize GHG reduction, C-sequestration, and enhancement of AD commercial viability. Milestones/target dates: The model will be defined and functional specifications and input/output flows established within the first 6 months. Between year 1 and 2 individual sub-models will be wrapped and integrated into the overall process model. By the second year the web interface will be prepared. During the third year the web-based model will be demonstrated to stakeholders and decision-makers. Objectives 4 and 5: Produce the next generation of bio-product innovators and system operators by integrating undergraduate and graduate training and work force development. Develop an outreach and education program targeting dairy managers and AD system operators. Milestones/target dates: Student training will occur throughout the project. Outreach and educational programs will be delivered during years 2 and 3 of the project. Outputs: We will define optimal operating conditions for the AD, PHA, and Algal reactors, quantify carbon sequestration potential of the PHA and algal reactor systems, develop a web-based modeling tool, and train students and system operators. Project results will be communicated via manuscript publication, outreach and educational programs, and interactions with our stakeholder group.
Accelerated Renewable Energy0228524National Institute of Food and AgricultureMARKLEY, JOHN07/15/201207/14/2017COMPLETEMADISONBio-diesel Bio-gas Ethanol, bio-diesel, bio-gas, cellulosic Fertilizer, custom Manure, dairy Polymer separations, economic analysis, ethanol, cellulosic, fertilizer, custom, manure, dairy, polymer separations, precision-agA dairy with 1,700 cows produces 15 tons of manure per day. To handle the manure, the dairy must recycle 2.5 million gallons of water per day. The conventional solutions to these problems are wash the manure into a lagoon, dredge and manure solids and haul them to fields. Manure on the fields may not provide the correct nutrients and is subject to running off and polluting rivers. Our goal is to demonstrate the economic feasibility on the scale of a large dairy farm (1,700) cows of converting the manure produced into valuable commodities including methane gas for heating purposes in the farm, fuel ethanol, and custom fertilizer. Part of the farm acreage (5%) will be devoted to oilseed production, which will be converted to biodiesel to power vehicles on the farm. Our approach utilizes biomass processing technology developed by a small Wisconsin business (Soil Net) and engineering and fabrication expertise of another small Wisconsin business (Braun Electric). We foresee a strong potential for commercialization of this technology and its widespread adoption.We propose a public (University of Wisconsin-Madison) and private (Cottonwood Dairy; Soil Net, LLC; Braun Electric; Resource Engineering Associates, Inc.) collaboration that encompasses both R&D and prototypical farm-based demonstration of the four components of the BRDI FOA: 1. Feedstocks Development: The bioenergy generated will derive primarily from recycled cellulosic components of dairy manure, which have minimal food/fuel issues. 2. Bio-Fuels and Bio-based Products Development: The project will demonstrate/evaluate multiple sub-processes and associated "value added" bio-based co-products -- vegetable oil/meal; oil/biodiesel; cellulosic ethanol; bio-gas/manure digestion; recycled rinse water; low and high P (phosphorus) crop nutrients; and multiple cellulosic manure fiber "fractions" (for mulches, bedding, etc.). 3. Bio-Fuels and Bio-based Products Development Analysis: The project will evaluate (calibrate, implement, validate) economic, environmental, lifecycle, process efficiency, and mass balance analysis and incorporate these into a business decision/management framework. In particular, an analysis of the economics of scale of the various system components will form a major part of the research effort. 4. Use of Oil/Biodiesel for the Production of Grain or Cellulosic Ethanol: The proposed system will be capable of producing oil/biodiesel from vegetable oil seed produced on the farm. Our research will determine the economic benefits of biodiesel vs. purified vegetable oil for direct use in operating farm vehicles and machinery. The expected outcome is the demonstration of cost effective livestock manure separation and processing to produce bio-energy, bio-feedstocks, and value added co-products (mulch/fertilizers) for on-farm and off-farm ("export") markets that can be carried out at a variety of large/medium/small scales. This technology will provide opportunities to exploit readily available, relatively low value potential cellulosic bio-feedstocks-ones that largely avoid food/fuel concerns-to improve economic sustainability: on-farm substitution for purchased energy and feed/fertilizer nutrients or as potential farm revenue diversification; improve environmental sustainability. The approach will reduce GHG/carbon footprint, soil/nutrient losses, and potential manure borne pathogens; and, improve regional economic development. We have shown that a demand exists for many of the manure fiber (mulch/fertilizer) co-products. The flexibility to adopt one (or several) of process/flow components, sequentially, based on the specifics of extant farm infrastructure (manure type/volumes, manure handling/processing, etc.) increases the proposed project's commercialization potential. The extensive process/flow measurement and analysis R&D, at both lab/bench and commercial scale, will provide the analytic/measurement tools to evaluate the economic, environmental, food safety, and regional economic development impacts of this potential commercialization at a variety of resolutions (farm, county, region).
The Science and Engineering for a Biobased Industry and Economy0216889National Institute of Food and AgricultureCapareda, Sergio10/01/200809/30/2013COMPLETECOLLEGE STATIONanaerobic digestion, biodiesel, biogas, biomass energy, ethanol, gasificationWe are investigating several biological and theremochemical processes for conversion of biomass to energy. In one project, we are evaluating thermochemical gasification combined with thermophilic anaerobic digestion for conversion of dairy manure for on-site energy production. In addition to producing energy, the mass and volume of wastes from the combined system will be significantly reduced which will allow more economical export of phosphorus and other nutrients from the watershed in which the dairy is located. This will help the overall dairy operation become more sustainable. We are investigating methods to increase biogas production from anaerobic digestion, for example, by incorporating the glycerol byproduct from biodiesel production in the feedstock to the digester. We are investigating conversion of different types of sorghum to ethanol, and we are developing alternative methods for production of biodiesel from oils and fats. Not applicable
Improving the Sustainability of Livestock and Poultry Production in the United States (OLD S1032)0213075National Institute of Food and AgricultureZhu, Jun10/01/200709/30/2013COMPLETEMINNEAPOLISecological footprint, effluents, emergy, emissions, land application, life cycle analysis;, manure, treatment, waste, odorsThe project proposes to develop computer based mathematical descriptions of the animal production industries using measures of sustainability and environmental impacts that will help describe and define that scientific framework. Although all aspects of animal production must be included, we propose to put special emphasis on evaluating manure management and utilization best management practices and their impact on sustainability and environmental impacts beyond the farm and field scale. A number of interesting and useful analytical paradigms already exist for describing and modeling the sustainability of arbitrarily defined systems, and we do not intend to suggest that one of them is necessarily superior to the others in every conceivable use or context. Each of them has strengths and shortcomings that depend on the way in which it is used.Not applicable
Animal Manure and Waste Utilization, Treatment, and Nuisance Avoidance for a Sustainable Agriculture0191378National Institute of Food and AgricultureBundy, D. S.10/01/200109/30/2007COMPLETEAMEShydrogen sulfide, contaminants, ammonia, endotoxins, particulates, swine, poultry, dairy cattle, manures, odor control, feed additives, measurement, animal waste, waste treatment, sustainable agriculture, pollution control, nutrient utilization, agricultural engineering, animal nutrition, systems development, performance evaluation, livestock production, poultry production, production systems, feeding systems, nutrient loss, phosphorus, cooperative research, phytases, enzyme activityThe method to measure gases, dusts, odors, pathogens from livestock systems needs further standardization. This research study will provide methods to measure atmosphere air-borne contaminants that workers and neighboring residence may be exposed. The result will be to identify or develop technologies that will result in less air-borne emission from the livestock system.2. Develop, evaluate, and refine physical, chemical and biological treatment processes in engineered and natural systems for management of manures and other wastes. 3. Develop methodology, technology, and management practices to reduce odors, gases, airborne microflora, particulate matter, and other airborne emissions from animal production systems. 4. Develop and evaluate feeding systems for their potential to alter the excretion of environmentally-sensitive nutrients by livestock.
Determination of Operational Parameters for a Full-Scale Anaerobic Sequencing Batch Reactor (ASBR)Used to Treat Swine Waste0189888National Institute of Food and AgricultureLalman, J. A.10/01/200109/30/2005COMPLETESTILLWATERodor, swine, animal waste, anaerobic conditions, waste management, parameters, waste disposal systems, systems development, cell biology, solid waste, liquid waste, sludge, optimization, data collection, temperature, mathematical models, production systems, biomass, kinetics, statistical analysis, sensitivity analysis, biogas, educational materials, information dissemination, new technologyWaste generated from animal farming can be treated biologically to reduce the amount of pathogens and carbonaceous compounds while recovering nitrogen and phosphorus nutrients. Biological treatment includes an anaerobic reactor followed by a facultative reactor. This process configuration is expected to reduce odorous compounds while recovering valuable nutrients. This project examines the treatment of swine waste using an anaerobic sequencing batch reactor.(1) Characterize solids and liquids fractions of raw waste; (2) determine laboratory scale ASBR operational parameters for optimum gas production and sludge settlability; (3)determine optimum operating cycle to reach target operating parameters while minimizing overall cycle time for the lab scale ASBR; (4) optimize operational parameters of full-scale ASBR using data gathered from laboratory scale studies; (5) determine operational parameters under different temperature conditions; and (6) integrate the ASBR technology into agricultural systems using a mathematical model.
Reducing the Environmental Impact of Food Animal Production0185866National Institute of Food and AgricultureClassen, J10/01/201209/30/2017COMPLETERALEIGHanimal production, manure management, resource recovery, sustainability, systems analysisDemand for food and especially for animal products is expected to double in the coming decades due to population increases and expected higher living standards of parts of the world. Resources needed to produce these products are under increasing stress imposing limits on soil, water, nutrients and energy availability and quality. At the same time, public interest in how our food animals are raised is also increasing, with questions about food safety, animal welfare, organic methods, environmental pollution, costs, and jobs. Potential benefits of recent and current research have not been fully integrated into stakeholder tools because of the complex interactions of the production systems, management systems, and social systems in which they function. This project will not only continue to develop the needed tools and techniques but will also work to integrate the results of these tools with existing tools to generate meaningful options with expected impacts on production, emissions, and resource consumption. Results will be useful to the general public's understanding of our food system as well as to policy makers and producers asking questions about what technologies are available, what will happen if a specific technology or mix of technologies is implemented.The goal of this project is to develop tools that will help the food animal production industry reduce adverse ecological impacts, improve sustainability, and increase productivity. Specific objectives are to: 1. Develop, evaluate, and optimize processes and systems to reduce resource use, increase recovery of renewable products, and quantify tradeoffs in economic and social sustainability. 2. Define significant gaps in knowledge that limit our ability to identify economically, environmentally, and socially optimal food animal production and waste management systems. 3. Develop preliminary models of the swine and poultry industries that facilitate understanding of the interactions between livestock production, natural resource use, environmental and ecological variables, economic indicators and societal concerns to sustainably meet the future demands for animal products.