Saved Search "contaminants"

Search these terms...
Search in these fields...
Show these fields in the results...
View results as:   Document   Tabular (* always hidden in tabular view)
↔ Hide Filters  Filter Chooser
↔ Show Filters 
 Project Title Accession Number Sponsoring Agency Project Director Project Start Date Project End Date Project Status Recipient City Name Keywords Non-Technical Summary Objectives
A closed-loop dairy system by an integrated anaerobic digestion and pyrolysis process for food-energy-water nexus1018814National Institute of Food and AgricultureKan, Eun Sung04/05/201904/05/2024COMPLETECOLLEGE STATIONagricultural wastes, anaerobic digestion, biochar, dairy farm, pyrolysis, activated biochar, functionalized biocharDairy farms, like other animal farms, have multiple threats against sustainable operation such as significant pollution in water, air and soil, food safety, water shortage and energy supply. Current management of dairy manure such as land application often causes significant water, air and soil pollution. High levels of nutrients and various antibiotics released into environment lead to algal blooms, eutrophication, nitrate accumulation and increase of antibiotic resistant bacteria. Land application of manure also drastically contributes to emission of odor and greenhouse gases from manure while causing soil acidity/infertility, which would decrease agricultural productivity. Composting can produce biofertilizers via microbial actions using dairy manure; however, it also causes drastic loss of ammonia and development of odors during the composting process. Anaerobic digestion has been suggested to resolve manure disposal, energy recovery and greenhouse gas control. Despite several advantages, it was found that anaerobic digestion suffered fluctuating performance, difficult operation, low yield of biogas, and the need to dispose of undigested sludge after digestion. Recently thermal disposal of manure such as pyrolysis and gasification has been studied to convert manure to bio-oil, syngas and biochar. However, thermal disposal of manure has revealed high energy consumption with high moisture of wet manure and low yields of energy (bio-oil and syngas).Proposed concept: A closed-loop dairy system by an integrated anaerobic digestion and pyrolysis processTo improve current anaerobic digestion and pyrolysis, an integrated pyrolysis and biochar process has been suggested to be a highly promising option for manure and wastewater treatment at dairy farms. However, so far there have been few systematic approaches to develop the pyrolysis-biochar process for dairy manure disposal, wastewater treatment, nutrient recovery and soil amendment. In this project I will address these critical issues with systematic investigation of an integrated anaerobic digestion and pyrolysis to overcome dairy farm-associated sustainable problems. The proposed dairy system combines anaerobic digestion (AD) and pyrolysis (PY) for intensifying food-energy-water at dairies. Flushed manure goes to an anaerobic digester as a bioreactor, where manure is converted to biogas, liquid and solid digestates. A PY unit integrated with AD convert mixture of AD digestate and waste hays to biochar and syngas. Syngas from PY and biogas from AD are fed to a combined heat and power generator (CHP) to make energy for supporting AD and PY. The total amount of electricity and heat generation from CHP is used to support energy consumption of pyrolysis and anaerobic digestion. The excessive electricity can be sold to bring an extra revenue. Biochars are added to AD for enhancing biogas production, process stability and manure disposal. Biochar are also amended with soil for increasing productivity of crops, vegetables, and forage grasses as well as soil fertility. The crops and forage grasses are recycled to feeding cows, while organic vegetables are sold for additional profits. Some biochar is made into activated carbon via steam activation process, which removes emerging contaminants such as antibiotics from AD liquid digestate. Some proportion of treated liquid digestate is irrigated to crops, vegetables and forage grasses while the rest is recycled for flushing manure. Excessive activated carbon can be also sold as water filtering media for additional profits. Therefore, the integrated AD and PY can overcome current limitations of AD and PY including treatment of enormous amounts of AD digestate, high energy consumption and decontamination of AD liquid digestate.The overall goal of this project is to enhance agricultural and environmental sustainability at dairy systems by an integrated anaerobic digestion and pyrolysis process.The specific objectives to achieve the goal of this project include:Objective 1: Develop a novel pyrolysis for production of energy, biochar, and activated biochar from anaerobic solid digestate of dairy manure mixed with waste hays at dairy systems.Objective 2: Develop an enhanced anaerobic digestion of dairy wastes with addition of biochar for increasing energy-water-food production.Objective 3: Develop treatment and reuse of anaerobic liquid digestate by biochar-derived activated carbon.
Algae for conversion of manure nutrients to animal feed: Evaluation of advanced nutritional value, toxicity, and zoonotic pathogens1000956National Institute of Food and AgricultureMurinda, Shelton09/01/201308/31/2017COMPLETEPomonaAlgae, Animal Feed, Bacteria, Manure, Nutritional Value, Pathogens, Toxic CyanobacteriaRationale The need to control manure-derived nutrient pollution is straining the confined animal production industry. California is the top milk producing state and has some of the strictest nutrient regulations. But in the San Joaquin Valley, many dairies do not have affordable access to more land for manure application. A highly productive crop is needed that will convert manure nitrogen (N) and phosphate (P) into feed but in smaller land areas than crops such as corn. Algae are a candidate feed with annual yields typically 7-13 times greater than soy or corn. Beyond 40-50% protein, algae also contain fatty acids, amino acids, pigments, and vitamins that are valuable in animal feeds, especially for adding value to milk. Advances in molecular biology allow us to gather needed information on the risks and benefits of algae-based animal feeds. Overall goal Benefit animal agriculture and the environment by introducing microalgae as a fast-growing livestock feed crop. Aim 1 Cultivate algae in dairy freestall barn flush water, treating this wastewater, while producing algae feedstock at a high annual rate, at least 10-times greater than corn. Algae will be cultivated in 30-cm deep raceway ponds at the 300-head Cal Poly campus dairy farm where extensive manure management research already occurs under USDA and USEPA sponsorship. Aim 2 Produce algae with favorable nutritional characteristics (high digestibility, valuable fatty and amino acid profiles, balanced protein and carbohydrate concentration, etc.) by adjusting the treated-water recycling into the ponds to optimize the N concentration in the growth medium. Aim 3 Test pathogen survival in algae feeds prepared by pasteurization and/or drying and heating. A trend in municipal wastewater treatment is pasteurization of treated effluent using waste heat from natural gas electrical generator. Large dairies with digesters will have waste heat available for pasteurization and drying. High-protein algae will be pelletized with high carbohydrate feeds to create a balanced feed. The heat of pelletization also contributes to pasteurization. Cal Poly has a research feed mill for producing such blended feeds. Aim 4 Monitor contamination by cyanobacteria and any cyanobacterial toxins. Approach Removal of N, P, and other constituents will be optimized in influent and effluent of identical ponds. Algal biomass (harvested by bioflocculation+settling) will be analyzed for N, P, protein, carbohydrates, and profiles of fatty and amino acids. Pathogen and algal communities extant in raw and feed-processed algal biomass will be analyzed using metagenomics and pyrosequencing. Potential toxicity of algal biomass will be studied using toxicity evaluation of cell-free extracts on cultured mammalian cells. A TC 20 Cell counter (BioRad Laboratories) will be used to monitor toxicity events on treated cells using trypan blue staining. Cytotoxic positive samples will be tested for both presence and concentration of known cyanobacterial toxins. The researchers have decades' experience in algae production, wastewater treatment, and food safety. Expected outcomes Starting with dairy, the project will lead the way towards an algae feed industry based on advanced nutritional features to enhance agricultural products (e.g., milk protein, poultry pigment) while assisting farmers to meet manure management challenges. We will address topics rarely covered in the algae field: potential toxicity and zoonotic pathogens. Our approach is unique in that it integrates and addresses a triad of issues, namely, food safety issues along with algae production techniques and waste management. Project Goals 1. Generate experimental field data and calibrate optimization models. For treatment, expected removals are 85-95% biochemical oxygen demand and soluble Nitrogen (N) and 40-80% solublePhosphate (P) removal, depending on culturing technique and season. 2. Maximize the nutritional value of produced algae for animal feed. The cultures will be optimized to produce biomass at a high rate while also having the highest value composition for feed (in terms of lipids, digestibility, essential fatty and amino acid profiles, including balanced protein and carbohydrate concentrations). 3. Optimize pathogen inactivation methods. Pathogens will die-off in the ponds and during disinfection processing of the harvested biomass. Inactivation rates for representative pathogen indicators will be determined under various algae cultivation conditions and during trials with several biomass disinfection techniques. The optimal combination of pond conditions (e.g., high pH) and biomass processing (e.g., pasteurization) will be determined to achieve needed log inactivation of pathogens, which is typically 1- >4 log10 reduction (Sobsey et al., Available Online). 4. Quantify and control any cyanobacterial toxins. qPCR assays described by Al-Tarineh et al. (2012 a and b) will be used and optimized to reliably determine the copy number of cyanotoxin biosynthesis genes, as well as an internal cyanobacteria 16S rDNA control, in a single reaction. The latter detects for presence of cyanobacteria. If toxins are detected, measures will be taken to control invasion of the ponds by cyanotoxin-producing cyanobacteria strains. Overall Goal Benefit agriculture and the environment by introducing microalgae, a fast-growing livestock feed crop.
Enable New Marketable, Value-added Coproducts to Improve Biorefining Profitability0427684Agricultural Research Service/USDAMOREAU R A09/08/201409/07/2019ACTIVEWYNDMOORCOPRODUCTS, BIOFUELS, ETHANOL, SORGHUM, BIODIESEL, CELLULOSE, HEMICELLULOSE, BRAN, GUMSNot applicable1. Develop processes to fractionate sorghum and corn/sorghum oils into new commercially-viable coproducts. 2. Develop processes to fractionate grain-derived brans into new commercially-viable coproducts. 2a: Develop processes to fractionate grain-derived brans into new commercially-viable coproducts such as lipid-based coproducts and for other industrial uses such as extrusion or producing energy or fuel. 2b: Develop commercially-viable, value-added carbohydrate based co-products from sorghum brans and the brans derived from other grains during their biorefinery process. 3. Develop processes to fractionate biorefinery-derived celluloses and hemicelluloses into new commercially-viable coproducts. 3a: Develop commercially-viable, value-added hemicellulose based co-products from sorghum biomass, sorghum bagasse and other agricultural based biomasses produced during their biorefining. 3b: Develop commercially-viable, value-added cellulose based co-products from sorghum biomass, sorghum bagasse and other agricultural based biomasses produced during their biorefining. 4. Develop technologies that enhance biodiesel quality so as to enable greater market supply and demand for biodiesel fuels and >B5 blends in particular. 4a: Improve the low temperature operability of biodiesel by chemical modification of the branched-chain fatty acids. 4b: Develop technologies that significantly reduce quality-related limitations to market growth of biodiesel produced from trap and float greases. 4c: Further develop direct (in situ) biodiesel production so as to enable its commercial deployment. 5. Develop technologies that enable the commercial production of new products and coproducts at lipid-based biorefineries. 5a: Enable the commercial production of alkyl-branched from agricultural products and food-wastes. 5b: Enable the commercial production of aryl-branched fatty acids produced from a combination of lipids and natural antimicrobials possessing phenol functionalities.
ECOLOGY, MANAGEMENT AND ENVIRONMENTAL IMPACT OF WEEDY AND INVASIVE PLANT SPECIES IN A CHANGING CLIMATE0420487Agricultural Research Service/USDADAVIS A S10/01/201009/30/2015COMPLETEUrbanaWEEDS, MICROORGANISMS, BIODEGRADATION, MISCANTHUS, SWEET, CORN, SOYBEANS, SOIL, NITROGEN, CYCLING, CLIMATE, CHANGENot applicableObjective 1: Measure effects of management, climate, and soil conditions on microbial processes (herbicide degradation, nitrogen cycling, and weed seedbank dynamics) in corn/soybean ecosystems. Objective 2: Evaluate the effects of management and climate change on the biology and ecology of weedy and invasive species, including potential weedy cellulosic bioenergy crops, in Midwestern cropping systems. Objective 3: Identify effective combinations of weed management components through application of both new and existing knowledge that exploit useful plant and environmental interactions in vegetable cropping systems.
Efficient Management and Use of Animal Manure to Protect Human Health and Environmental Quality0420394Agricultural Research Service/USDASISTANI K R10/01/201009/30/2015COMPLETEBOWLING GREENANIMAL, MANURE, ODOR, NUTRIENT, BYPRODUCT, ATMOSPHERIC, EMISSIONS, KARST, TOPOGRAPHY, PATHOGEN, TREATMENT, TECHNOLOGY, MICROORGANISMSNot applicableThe overall goal of the research project which is formulated as a real partnership between ARS and Western Kentucky University (WKU) is to conduct cost effective and problem solving research associated with animal waste management. The research will evaluate management practices and treatment strategies that protect water quality, reduce atmospheric emissions, and control pathogens at the animal production facilities, manure storage areas, and field application sites, particularly for the karst topography. This Project Plan is a unique situation in the sense that non-ARS scientists from WKU are included on an in-house project to conduct research under the NP 214. The objectives and related specific sub-objectives for the next 5 years are organized according to the Components (Nutrient, Emission, Pathogen, and Byproduct) of the NP 214, which mostly apply to this project as follows: 1) develop improved best management practices, application technologies, and decision support systems for poultry and livestock manure used in crop production; 2) develop methods to identify and quantify emissions, from poultry, dairy and swine rearing operations and manure applied lands; 3) reduce ammonia, odors, microorganisms and particulate emissions from dairy, swine and poultry operations through the use of treatment systems (e.g. biofilters and scrubbers) and innovative management practices; 4) perform runoff and leaching experiments on a variety of soils amended with dairy, swine, or poultry manures infected with Campylobacter jejuni (C. jejuni), Salmonella sp. or Mycobacterium avium subsp. paratuberculosis (MAP) and compare observed transport with that observed for common indicator organisms such as E. coli, enterococci, and Bacteriodes; and 5) use molecular-based methodologies to quantify the occurrence of pathogens and evaluate new methods to inhibit their survival and transport in soil, water, and waste treatment systems.
Innovative Bioresource Management Technologies for Enhanced Environmental Quality and Value Optimization0420348Agricultural Research Service/USDASZOGI A A10/01/201009/30/2015COMPLETEFLORENCEANIMAL, WATER, PHOSPHORUS, TRACE, AMMONIA, DENITRIFICATION, REMOVAL, REDOX, OXYGEN, WETLAND, WASTE, QUALITY, NITROGEN, NITRIFICATION, SOLIDS, POTENTIAL, PLANTS, TREATMENT, CARBON, BIOCHAR, PYROLYSIS, ANAMMOX, GENES, AMENDMENT, FERTILIZER, EMISSIONS, GAS, NITROUS, OXIDENot applicable1. Develop improved treatment technologies to better manage manure from swine, poultry and dairy operations to reduce releases to the environment of odors, pathogens, ammonia, and greenhouse gases as well as to maximize nutrient recovery. 2. Develop renewable energy via thermochemical technologies and practices for improved conversion of manure into heat, power, biofuels, and biochars. 3. Develop guidelines to minimize nitrous oxide emissions from poultry and swine manure-impacted riparian buffers and treatment wetlands. 4. Develop beneficial uses of manure treatment technology byproducts.
BIOLOGICAL TREATMENT OF MANURE AND ORGANIC RESIDUALS TO CAPTURE NUTRIENTS AND TRANSFORM CONTAMINANTS0420063Agricultural Research Service/USDAMULBRY III W W04/03/201004/02/2015COMPLETEBELTSVILLESWINE, WASTE, SOIL, POULTRY, MANAGEMENT, DAIRY, EMMISION, MANURE, TREATMENT, ENVIRONMENTAL, BYPRODUCTS, FATE, ORGANIC, BIOENERGY, COMPOST, RESIDUE, DESTRUCTION, NUTRIENTS, APPLICATIONS, ANAEROBIC, DIGESTION, ALGAL, METHANE, AMMONIA, ANTIBIOTICNot applicableDevelopment and evaluation of manure treatment systems. Specific objectives: (1) Develop treatment technologies and management practices to reduce the concentrations of pharmaceutically active compounds (antibiotics and natural hormones) in manures, litters, and biosolids utilized in agricultural settings; (2) Develop management practices and technologies to minimize greenhouse gas (GHG) emissions from manure and litter storage and from composting operations by manipulating the biological, chemical, and physical processes influencing production and release of ammonia and greenhouse gases during composting; (3) Develop technology and management practices that improve the economics and treatment efficiency of anaerobic digestion of animal manures and other organic feedstocks (e.g. food wastes, crops/residues) for waste treatment and energy production.
Management of Manure Nutrients, Environmental Contaminants, and Energy From Cattle and Swine Production Facilities0420053Agricultural Research Service/USDAWOODBURY B L10/01/201009/30/2015COMPLETECLAY CENTERFEEDLOT, SURFACING, MATERIAL, BEEF, MONOSLOPE, FACILITIES, ANAEROBIC, DIGESTION, ENERGY, RECOVERY, COAL-ASH, WDGS, GREENHOUSE, GASES, AIR, QUALITY, PATHOGENSNot applicableObj.1: Develop precision techniques or other methods for the characterization and harvesting of feedlot manure packs in order to maximize nutrient and energy value and minimize environmental risk. Obj.2: Determine the fate and transport of antibiotics (e.g., monensin and tetracyclines) and pathogens (e.g., E.coli O157:H7 and Salmonella and Campylobacter) in beef cattle and swine facilities. Obj.3: Quantify and characterize air emissions from beef cattle and swine facilities to evaluate and improve management practices. Obj.4: Determine the risk and benefits of using coal-ash and other industrial byproducts as a component of surfacing material for feedlot pens.
METABOLIC VARIABLES AFFECTING THE EFFICACY, SAFETY, AND FATE OF AGRICULTURAL CHEMICALS0410345Agricultural Research Service/USDASMITH D J02/03/200602/02/2011COMPLETEFARGORESIDUE, CHEMICAL, FOOD, ANIMAL, DETECTION, METABOLISM, PATHOGEN, SOIL, MANURE, COMPOST, WATERNot applicableObjective 1: Determine metabolic variables (rates of absorption, tissue and microbial biotransformation, excretion) that positively or negatively influence the practical use of novel pre-harvest food safety chemicals in food animals. Objective 2: Determine the fate of endogenous animal hormones, novel pre-harvest food safety compounds, and antibiotics in animal wastes, including their transport through soil and water, and develop intervention strategies that reduce their environmental impact. Objective 3: Develop sensitive and accurate analytical tools to rapidly detect and quantify agriculturally important chemicals studied under objectives 1 and 2.
RISK ASSESSMENT AND REMEDIATION OF SOIL AND AMENDMENT TRACE ELEMENTS0409625Agricultural Research Service/USDACHANEY R L04/03/200504/02/2010COMPLETEBELTSVILLEMANURE, BIOSOLIDS, COMPOST, CADMIUM, ZINC, LEAD, SOIL, CONTAMINATION, THLASPI, CAERULESCENS, PHYTOEXTRACTION, REMEDIATION, BIOAVAILABILITY, PHYTOAVAILABILITY, ADSORPTION, IRON, OXIDE, MANGANESE, OXIDE, ORGANIC, MATTER, INACTIVATION, MINE, SMELTERNot applicableCharacterize long term phytoavailability of trace elements in soils amended with swine manure, poultry litter, biosolids, byproducts and composts. Conduct literature review of possible risks from trace elements that have not been evaluated for manure and biosolids and conduct experimental tests needed to provide more complete risk assessments for trace elements in byproducts or contaminated soils. Develop and demonstrate addition of Fe and Mn oxide rich byproducts to manure, biosolids or compost to increase specific metal adsorption capacity and reduce phyto and bio availability of soil accumulated trace elements and phosphate. Develop improved technology for phytoextraction of soil Cd from contaminated soils requiring remediation. Identify methods for bioremediation of munitions contaminated soils using phytoextraction and rumenal biodegradation. Determine if mycorrhizal protein "Glomalin" or soil humic materials give increased metal binding by long term biosolids amended or manured soils and could reduce potential future phytotoxicity of applied metals.
ANAEROBIC DIGESTION OF AGRICULTURAL AND FOOD WASTE BIOMASS FOR THE EFFICIENT PRODUCTION OF HIGH QUALITY BIOGAS0200286National Institute of Food and AgricultureSchanbacher, F. L.04/01/200409/30/2009COMPLETECOLUMBUSanaerobic digestion, biomass, manures, food waste, methane, biogas, hydrogen, energy sources, waste utilization, waste, renewable resources, production efficiency, recycling, systems development, engineering, engines, fuel cells, process development, new technology, energy conversion, animal waste, snack foods, dairy cattle, corn silage, rumen fluid, sludge, energy productionThis research initiative is rooted in the need for alternative energy sources that are renewable and competitive with imported petroleum fuels. Nearly all of the agricultural production entities, whether crop, horticultural, or animal in nature, create significant quantities of waste biomass. Closed system anaerobic digestion of these wastes offers the opportunity to produce a clean form of fuel (methane and/or hydrogen) with minimal environmental emissionsInitially this research is to develop laboratory scale anaerobic digestion systems to determine the metabolic and nutritional requirements of digesters for efficient conversion of diverse biomass feedstock types to biogas energy. Secondly, it is important to develop sensitive analytical technologies to monitor metabolic changes of feedstocks during biodigestion as well as define the purity of biogas produced as a necessary guide in the development of anaerobic process strategies. Sequentially, it is important to scale anaerobic digestion of biomass to produce competitive quantities of clean biogas for reliable power for process heat, combustion or turbine engines, or solid-oxide fuel cells. Finally, we intend to integrate biomass utilization and energy conversion technologies for a holistic environmental and energy conversion strategy to provide effective energy production and waste remediation.
Animal Manure and Waste Utilization, Treatment, and Nuisance Avoidance for a Sustainable Agriculture0191378National Institute of Food and AgricultureBundy, D. S.10/01/200109/30/2007COMPLETEAMEShydrogen sulfide, contaminants, ammonia, endotoxins, particulates, swine, poultry, dairy cattle, manures, odor control, feed additives, measurement, animal waste, waste treatment, sustainable agriculture, pollution control, nutrient utilization, agricultural engineering, animal nutrition, systems development, performance evaluation, livestock production, poultry production, production systems, feeding systems, nutrient loss, phosphorus, cooperative research, phytases, enzyme activityThe method to measure gases, dusts, odors, pathogens from livestock systems needs further standardization. This research study will provide methods to measure atmosphere air-borne contaminants that workers and neighboring residence may be exposed. The result will be to identify or develop technologies that will result in less air-borne emission from the livestock system.2. Develop, evaluate, and refine physical, chemical and biological treatment processes in engineered and natural systems for management of manures and other wastes. 3. Develop methodology, technology, and management practices to reduce odors, gases, airborne microflora, particulate matter, and other airborne emissions from animal production systems. 4. Develop and evaluate feeding systems for their potential to alter the excretion of environmentally-sensitive nutrients by livestock.
ENVIRONMENTAL BEHAVIOR OF EMERGING ORGANIC CHEMICALS OF CONCERN0161008National Institute of Food and AgricultureLee, Linda10/01/201009/30/2015COMPLETEWEST LAFAYETTEaerobic degradation anaerobic degradation, bisolids, dissolved organic material, perfluorinated compounds, persistence, personal care products, pharmaceuticals, telomer compoundsThe physical, chemical, and biological processes control persistence, distribution, and potential human and ecological exposure of contaminants in the soil, water, and in some cases, complex waste environment. Both applied and basic research will be conducted to address environmental fate of emerging organic compounds of concern (human pharmaceuticals and personal care products, PPCPs) and perfluorinated organic chemicals used in rendering textile fabrics stain-resistant and in aqueous fire fighting foams used to fight fires. Specific objectives include: (1) assessing the fate of emerging organic compounds of concern in land-applied biosolids; and (2) quantifying the abiotic and biotransformation potential in soil, aquifers, water, and landfill systems of perfluorinated compounds. Information will be critical to the development of management and remediation alternatives for reducing the release and transport of these compounds of concern released through land application of biosolids, discharged form wastewater treatment facilities, used-product placement in landfills, and military fire-training exercises.The goal of this program is to identify and quantify reactions that control the persistence and distribution of organic contaminants in the soil and water environment, which directly influence their potential towards human and ecological exposure. Specific objectives for the next 5 years include: (1) Quantify the fate of emerging organic compounds of concern (human pharmaceuticals and personal care products, PPCPs) in land-applied biosolids; and (2) Quantify the abiotic and biotransformation potential in soil, aquifers, water, landfill systems, and the subsurface under military fire-training areas of perfluorinated compounds used for rendering textile fabrics stain resistant and in aqueous film-forming foams.