New Biorefinery: Value added products from biomass and biotechnology of sustainable agriculture | 1026281 | Gu, ZhengRong | 10/01/2021 | 09/30/2026 | ACTIVE | BROOKINGS | Biochar, Lignin, anaerobic digestion, electrochemistry, food preservative, manure, oilseeds, graphene | Developing high value products from biomass is necessary to improve the economic sustainability and viability of future bioenergy processes. In this project, integrated biorefinery platforms and sustainable agricultural technologies will be investigated to generate value-added products and enable sustainable agricultural production. This effort will focus on development of three key objectives.Objective 1. Develop fresh produce and meat preservative from glucosinolates as a value added coproduct of oilseeds. Glucosinolates (GLS) and myrosinase (MYRS) will be extracted and isolated via selective adsorption. An adsorbent packet, in which GLS and MYRS are adsorbed on different materials, will enable controllable release of GLS and MYRS simultaneously. Subsequent hydrolysis of GLS by MYRS will release bioactive isothiocyanates in food packaging. The anti-microbial activity of isothiocyanates against food spoilage and poisoning microbes (grey mold, E. coli and Salmonella) will be quantified using FDA standard assay methods.Objective 2. Develop an electrochemical enhanced anaerobic process to convert urea in animal manure to controlled release nitrogen fertilizer and generate electricity for sustainable agriculture. An electrochemical enhanced anaerobic process, using biochar as microbial fuel cell electrodes, will be developed to enhance anaerobic digestion of manure, minimize loss of nutrients, and improve biogas quality. We will also evaluate innovative biochar electrodes to achieve complete mineralization of urea as well as immobilize nitrate in biochar as sustainable releasing fertilizer. We will optimize energy efficiency and conversion selectivity of the electrochemical anaerobic digestion to achieve simultaneously production of high quality bio-natural gas, recovery of sustainable releasing fertilizer, and production of electricity from manure wastes. Furthermore, we will evaluate N and P leaching from soil amended with biochar containing digestates to understand how biochar addition in anaerobic digestion impacts sustainable fertilization pratices.Objective 3. Develop an advanced thermochemical process to prepared graphene from lignin for use as electrodes for energy storge devices, such as Li batteries and supercapacitors. A new flash catalytic thermochemical process (FCTP), which is inspired by a recent success in high power flash graphene preparation including laser and joule heating processes, will be developed and optimized to produce 3D porous graphene from lignin. This project will also quantify how the composition and structure of different feedstocks, heating conditions, and catalysts (type and dosage) of thermochemical processes impact the resulting 3D porous graphene structure, surface chemical properties, and electric energy storage functions. Simultaneously, the reactions of FCTP will be monitored and disclosed through quantitatively analysis of volatile products. Furthermore, a deep understanding of the relationship between porous structure, surface properties of lignin based 3D porous graphene, and their functional performance of energy storage will be established. This project will also prepare bio-jet fuel from volatile co-products of FCTP. According to analysis results of FCTP's condensed volatile products, upgrading processes (such as catalytic hydrodeoxygenation) will be designed to convert the biooil of FCTP to drop-in jet fuel. Novel multifunctional catalysts will be developed. Regeneration of the spent catalysts will also be explored. | In the proposed hatch project, Dr. Gu will focus on the following objectives to enhance sustainable agriculture:Objective 1. Develop fresh produce and meat preservative from glucosinolates as a value added coproduct of oilseeds. Objective 2. Develop an electrochemical enhanced anaerobic process to convert urea in animal manure to controlled release nitrogen fertilizer and generate electricity for sustainable agriculture. Objective 3. Develop an advanced thermochemical process to prepared graphene from lignin for use as electrodes for energy storge devices, such as Li batteries and supercapacitors. |
Thermal Regulation with Salt Hydrates for Biodigester Isothermality | 1025901 | Charles, Josh | 07/01/2021 | 07/31/2022 | COMPLETE | Lancaster | Anaerobic Digestion, Phase Change Material, Small Farms, Intermittent Heat Source, Isothermality | To solve the digester thermal control problem, Advanced Cooling Technologies (ACT) is developing an energy storage material that can be wrapped around a digester. This material will absorb thermal energy from the sun during the day and release it to the digestate at night. The energy storage materials are very inexpensive but there are some challenges related to their long-term use. Fortunately, the project team has successfully solved these issues during past projects. Laboratory testing will be used to demonstrate the life of the developed materials followed by testing on a small biodigester for several months. By the end of the project, ACT hopes to demonstrate a low-cost, small-scale, biodigester which will allow many more small farms to take advantage of this renewable energy source. This will accelerate the transition to renewable energy sources, helping to minimize the ecological damage created by our current energy generation mix.? | The goal of this Phase 1 project is to increase the biogas production potential of small-scale anaerobic digesters (AD) without significant increases in system cost and/or complexity. If successful, this technology has the potential to make AD technology economically viable for small farms, increasing utilization of this renewable energy source. The technical goal of this project is to develop and successfully test a working small-scale anaerobic digester (AD) with passive thermal control across multiple seasons - especially the winter. AD bacteria require a stable, relatively warm digestate temperature to maximize their biogas generation rate. This is a challenge in small ADs where rapid ambient temperature changes and cold wintertime temperatures can easily deactivate the efficacy of the bacteria. This project will fix this problem by adding a low-cost phase change material (PCM) around the AD, which will act as a thermal buffer to rapid temperature changes. The PCM also serves as a thermal energy store that can absorb solar thermal energy during the day and release it into the AD throughout the night, forming a passive solar heating system that can maintain the digestate temperature throughout the winter. The development and performance demonstration of this passively heated and temperature-controlled AD is the primary goal of the project.The following objectives present a pathway to achieving the Phase 1 goal:Selection and thermal reliability testing of a hydrated salt PCM. A PCM that demonstrates a pathway to 25+ year performance through accelerated freeze/thaw tests is targeted. The PCM has a material cost target of ~$0.1/kg.Model, design, and fabricate a sub-scale proof-of-concept AD utilizing the selected PCM for passive thermal control. A system design that can be easily fabricated from inexpensive and widely available components is targeted.Successfully test the sub-scale AD with PCM thermal control and simulated solar heating over several months during the coldest seasons of the year. A daily digestate temperature variation of no more than ±2°C is targeted during passive solar heating of the digestor with integrated PCM thermal storage.Prepare an economic assessment of the proposed AD with passive solar heating and PCM thermal control. If a pathway towards the LCOG goal of $0.30/m3 is not realized in the Phase I prototype system, variations to the current design will be proposed for additional cost reductions to be examined experimentally during Phase II. |
A closed-loop dairy system by an integrated anaerobic digestion and pyrolysis process for food-energy-water nexus | 1018814 | Kan, Eun Sung | 04/05/2019 | 04/05/2024 | COMPLETE | COLLEGE STATION | agricultural wastes, anaerobic digestion, biochar, dairy farm, pyrolysis, activated biochar, functionalized biochar | Dairy farms, like other animal farms, have multiple threats against sustainable operation such as significant pollution in water, air and soil, food safety, water shortage and energy supply. Current management of dairy manure such as land application often causes significant water, air and soil pollution. High levels of nutrients and various antibiotics released into environment lead to algal blooms, eutrophication, nitrate accumulation and increase of antibiotic resistant bacteria. Land application of manure also drastically contributes to emission of odor and greenhouse gases from manure while causing soil acidity/infertility, which would decrease agricultural productivity. Composting can produce biofertilizers via microbial actions using dairy manure; however, it also causes drastic loss of ammonia and development of odors during the composting process. Anaerobic digestion has been suggested to resolve manure disposal, energy recovery and greenhouse gas control. Despite several advantages, it was found that anaerobic digestion suffered fluctuating performance, difficult operation, low yield of biogas, and the need to dispose of undigested sludge after digestion. Recently thermal disposal of manure such as pyrolysis and gasification has been studied to convert manure to bio-oil, syngas and biochar. However, thermal disposal of manure has revealed high energy consumption with high moisture of wet manure and low yields of energy (bio-oil and syngas).Proposed concept: A closed-loop dairy system by an integrated anaerobic digestion and pyrolysis processTo improve current anaerobic digestion and pyrolysis, an integrated pyrolysis and biochar process has been suggested to be a highly promising option for manure and wastewater treatment at dairy farms. However, so far there have been few systematic approaches to develop the pyrolysis-biochar process for dairy manure disposal, wastewater treatment, nutrient recovery and soil amendment. In this project I will address these critical issues with systematic investigation of an integrated anaerobic digestion and pyrolysis to overcome dairy farm-associated sustainable problems. The proposed dairy system combines anaerobic digestion (AD) and pyrolysis (PY) for intensifying food-energy-water at dairies. Flushed manure goes to an anaerobic digester as a bioreactor, where manure is converted to biogas, liquid and solid digestates. A PY unit integrated with AD convert mixture of AD digestate and waste hays to biochar and syngas. Syngas from PY and biogas from AD are fed to a combined heat and power generator (CHP) to make energy for supporting AD and PY. The total amount of electricity and heat generation from CHP is used to support energy consumption of pyrolysis and anaerobic digestion. The excessive electricity can be sold to bring an extra revenue. Biochars are added to AD for enhancing biogas production, process stability and manure disposal. Biochar are also amended with soil for increasing productivity of crops, vegetables, and forage grasses as well as soil fertility. The crops and forage grasses are recycled to feeding cows, while organic vegetables are sold for additional profits. Some biochar is made into activated carbon via steam activation process, which removes emerging contaminants such as antibiotics from AD liquid digestate. Some proportion of treated liquid digestate is irrigated to crops, vegetables and forage grasses while the rest is recycled for flushing manure. Excessive activated carbon can be also sold as water filtering media for additional profits. Therefore, the integrated AD and PY can overcome current limitations of AD and PY including treatment of enormous amounts of AD digestate, high energy consumption and decontamination of AD liquid digestate. | The overall goal of this project is to enhance agricultural and environmental sustainability at dairy systems by an integrated anaerobic digestion and pyrolysis process.The specific objectives to achieve the goal of this project include:Objective 1: Develop a novel pyrolysis for production of energy, biochar, and activated biochar from anaerobic solid digestate of dairy manure mixed with waste hays at dairy systems.Objective 2: Develop an enhanced anaerobic digestion of dairy wastes with addition of biochar for increasing energy-water-food production.Objective 3: Develop treatment and reuse of anaerobic liquid digestate by biochar-derived activated carbon. |
Recovery of Nitrogen, Phosphorus, Energy and Water from Food Processing Wastewater using Electrochemical Membrane Bioreactors | 1014012 | Wheeldon, Ian | 02/15/2017 | 07/14/2021 | COMPLETE | Riverside | Electrochemistry, Anaerobic treatment, Membrane bioreactors, Nutrient recovery | This project will produce fundamental scientific knowledge and engineering innovations to enable the recovery of high-quality water, nutrients (nitrogen (N) and phosphorus (P)), and energy from agricultural wastewater. We propose to characterize, for the first time, the speciation and fate of N- and P-containing molecules during anaerobic electrochemical membrane bioreactor (AEMBR) treatment. With this knowledge we will be able to integrate AEMBR processes to realize our long-term vision of developing highly efficient engineering systems capable of transforming concentrated waste streams to fertilizer, energy, and clean water. In this research project, we will (1) Develop and optimize integrated AEMBR systems using novel electrically conductive membrane electrodes tailored for different applications for the combined recovery of clean water (membrane permeate), liquid fertilizer (membrane retentate), and energy (biogas, H2, electricity). (2) Use a system approach to understand the transformation of N and P as they pass through the AEMBR system, and evaluate how the different forms interact with the electrically charged membrane surface, so the formation and recovery of nutrient containing chemicals can be optimized. (3) Investigate the interactions between carbon, nitrogen, phosphorus, and electron cycles within the AEMBR system using real waste streams, generated from food processing activities, to guide system development.This project addresses the Bioprocessing and Bioengineering program's priority of advancing or expanding the utilization of waste and byproducts generated in agricultural and food systems, as well as engineering new or improved products and processes that make use of materials from agricultural origin. | Our long-term goal is to develop highly efficient engineering systems capable of transforming concentrated waste streams to fertilizer, energy, and clean water. This project is based on the central hypothesis that reducing the amount of nitrogen and phosphorous bound to DOM in AEMBR reactors will increase both nutrient recovery in the membrane system and energy production. The rationale behind this project is that increasing the amount of bio- and electrochemically-available nitrogen and phosphorous in agricultural waste streams will enhance energy production and nutrient recovery from AEMBR systems, enhancing agricultural sustainability while reducing the environmental burden of current treatment processes. We intend to test our hypotheses, listed below, by pursuing the following specific Objectives:Objective 1. Develop electroactive membrane materials for water, gas, and nutrient separation and recovery (UC Riverside (UCR))Objective 2. Integrate electroactive membrane materials into AEMBRs and demonstrate capability of converting concentrated waste streams to fertilizer, energy and clean water (UC Boulder (UCB) and UCR)Objective 3. Identify and characterize N- and P- containing species in the different stages of the AEMBR treatment train (Cal State University East Bay (CSUEB)) |
Equipping Wayne County High School students for careers in Ohio`s bioenergy and water/wastewater industries | 1010593 | Ujor, Victor | 09/01/2016 | 08/31/2018 | COMPLETE | Columbus | Bioenergy, biofuel, bioprocessing, waste, wastewater | Ohio's bioenergy/bioprocessing industry has consistently grown over the past decade, eliciting significant increase in the demand for technical skills in bioconversion technologies. The proposed project will provide training in the use of core analytical and operational tools and procedures including assay-based wastewater analysis and digestion, high performance liquid chromatography (HPLC), Gas Chromatography (GC), Spectrophotometer, fermentation (5 L bioreactor), protein and DNA gel extraction and electrophoreses, lignocellulosic biomass pre-treatment and hydrolysis to high school students (grades 10 - 12). Ohio is a predominantly agro-based economy with a robust food processing sector that collectively generate millions of tons of organic residues annually, in addition to municipal solid waste and bio-solids. As research efforts towards biofuel production from renewable resources break new grounds, small and medium-scale companies in Ohio are vigorously pursuing bioconversion of lignocellulose-derived sugars to bioethanol and bio-butanol, while biogas production has grown significantly in the State. Additionally, water resource recovery through wastewater treatment has never been more critical in light of growing human population. These factors have spawned a massive need for staff with technical expertise in the hydrolysis of agro-derived biomass feedstock, wastewater treatment, and biofuel research. High school students are largely unaware of career opportunities that abound in Ohio in the areas of biofuels and wastewater treatment. According to Renewable Energy of America, Ohio's renewable energy sector has created 126,855 jobs, the sixth highest in the country. The proposed project will serve as medium for introducing high school students in Wayne County, Ohio to career opportunities in biofuel-related research and production, agricultural biomass feedstock hydrolysis, fermentation of food processing wastes, biogas production and wastewater treatment. High school students from Wooster High School and Northwestern High School will receive a two-month training in the laboratory over the summer (June and July) at the Agricultural Technical Institute (ATI) and the Ohio Agricultural Research and Development Center (OARDC), both at the Wooster campus of The Ohio State University. This training will also allow high school students to interact with students on the two-year Associate of Science Degree program in Renewable Energy at ATI, as well as researchers involved in different aspects of bioenergy research at OARDC. A career workshop involving industry partners from Quasar Energy, Cleveland, Ohio will be conducted at the end of the training program. Exposure to the above listed techniques employed in the drive for engineering robust biofuel-producing microorganisms, biomass hydrolysis and wastewater treatment will likely steer high school participants to pursue careers in the bioprocessing and wastewater treatment sectors. This will ensure the supply of much needed operators, technicians and researches in Ohio's growing bioenergy industry and in wastewater treatment. | The central goal of the project is to spark an interest in job opportunities in Ohio's bioenergy and water/wastewater industries amongst high school students in Wayne County through experiential training in core industry-relevant skills.The specific objectives are;To provide hands-on training in the operation of HPLC and GC, Fermentation Technology, DNA and protein gel electrophoresis, Genomic DNA and protein isolation, use of spectrophotometer, agricultural biomass hydrolysis, anaerobic digestion of municipal solid waste and wastewater to high school students.To expose high school students in Wayne County, Ohio to career opportunities in the biofuel/bioprocessing and water/wastewater industries through training and interactions with industry experts from Quasar Energy Group and other local Waste Management Engineering firms and with Renewable Energy students of Ohio State ATI.To provide a platform for professional interaction and exchange of ideas between science teachers (agricultural and environmental sciences, chemistry and physics) at Wooster and Northwestern High Schools with their counterparts from Ohio State ATI and OARDC - Ohio Agricultural Research and Development Center.To encourage stronger industry-academia relations between Quasar Energy Group (other local Waste Management Engineering firms) and, Ohio State ATI and OARDC, towards fashioning problem-solving curricula that prepare students for the workplace. |
Developing a Vacuum Distillation- Acid Absorption System for Recovery of Ammonia from Dairy Manure | 1007832 | Tao, Wendong | 09/04/2015 | 09/30/2015 | COMPLETE | ALBANY | ammonia, dairy manure, resource recovery, bio-based feedstock, concentrated animal feeding operations, waste to value | • Objective: Dairy farms generate 138 L liquid manure/cow, which has high ammonia concentrations and contributes to air and water pollution due to free ammonia release to air and nitrogen export to water at their production sites and manure-applied land.Anaerobically digested dairy manure has even higher ammonia concentrations. Besides, ammonia accumulation in digesters may inhibit anaerobic digestion at higher organic loading rates. Dairy farms need cost-effective methods to upgrade their nutrient management plans. Traditional wastewater treatment methods are economically prohibitive to remove ammonia from dairy manure. Our goal is to develop an innovative technology coupling vacuum distillation and acid absorption for sustainable recovery of ammonia from anaerobically digested and undigested dairy manure. Ammonia in dairy manure can be distilled under a low vacuum at a temperature below the normal boilingpoint of water and absorbed in a sulfuric acid solution to produce ammonium sulfate as a value-added product. Specific objectives are to 1) evaluate effects of temperature, low vacuum, and solids on ammonia recovery from dairy manure; 2) design an ammonia distillation - acid absorption system to produce ammonium sulfate granules with dairy manure; 3) construct a pilot-scale vacuum distillation - acid absorption system and develop operational parameters; and 4) perform a farm-scale economic analysis of the developed technology across its life cycle. This project will fill a literature gap in the combined effects of temperature, low vacuum, and solids on ammonia distillation. Kinetic study with a pilotscale ammonia recovery system at different feed depth will support design for scale-up,broader applications. Coupling vacuum distillation - acid absorption with anaerobic digestion is anticipated to make ammonia recovery an economically viable technology. The technology to be developed is applicable to dairy farms without anaerobic digesters as well.• Description: Concentrated animal feeding operations need cost-effective technologies to upgrade their nutrient management plans as required by increasingly stringent federal and state regulations. This project will develop a technology to produce a marketable productfrom dairy manure (ammonium sulfate granules as a bio-fertilizer and chemical), thus generating revenues while meeting regulatory requirements for farm nutrient management. By coupling ammonia recovery with anaerobic digestion and biogas energyutilization, heat is recycled, inhibition of ammonia to anaerobic digestion prevented, and greenhouse gas emission reduced. Three graduate students in this P3 team will develop knowledge and skills of sustainable design for wastewater treatment and resource recovery.Undergraduate students and high school students in a Boy Scouts Engineering Camp will gain hands-on skills with the pilot-scale ammonia recovery system and be inspired of sustainable waste management.• Results: A laboratory vacuum distillation - acid absorption assembly will be used to evaluate the efficiency and energy consumption of ammonia distillation under different combinations of temperature and low vacuum with digested and undigested dairy manure that have different salinities as well as manure filtrate. A pilot-scale ammonia recovery system will be operated by batch modes to prove the design concept and determine operational parameters including feed depth and cycle length. The pilot system will include a vacuum still for ammonia vaporization at boiling points lowered by low vacuum, an ammonia absorption column to produce ammonium sulfate granules, and a vacuum pump to bridge the still and absorption column. Cost benefit assessment across life cycle will be performed, taking a large-size dairy farm as an example.Contribution to Pollution Prevention and Control: Animal manure has 0.04-0.88% (wet weight) ammonia, which exists in free ammonia (NH3} and ionized ammonium (NH/). Volatilization of free ammonia may cause air pollution and health risks. Land application of liquid manure may impact on aquatic ecosystems and groundwater resources. Oxidation of ammonia generates greenhouse gas. In combination with anaerobic digestion, the proposed technology will provide dairy farms with a sustainable solution to nutrient management, minimizing the risk of ammonia release and nitrogen export. Ammonia recovery from dairy manure makes productive use of agricultural waste, thus preventing pollution associated with natural gas- and coal-based production of ammonia. The developed technology could also be applied to ammonia recovery from other ammonia-rich wastewater and coupled with anaerobic digestion of other organic wastes such as food waste and municipal sludge.Supplemental Keywords: bio-based feedstock, resource recovery; waste to value; concentrated animal feeding operationsAwarded Start Date: 8/15/2014Sponsor: Environmental Protection Agency | Dairy farms generate 138 L liquid manure/cow, which has high ammonia concentrations and contributes to air and water pollution due to free ammonia release to air and nitrogen export to water at their production sites and manure-applied land.Anaerobically digested dairy manure has even higher ammonia concentrations. Besides, ammonia accumulation in digesters may inhibit anaerobic digestion at higher organic loading rates. Dairy farms need cost-effective methods to upgrade their nutrient management plans. Traditional wastewater treatment methods are economically prohibitive to remove ammonia from dairy manure. Our goal is to develop an innovative technology coupling vacuum distillation and acid absorption for sustainable recovery of ammonia from anaerobically digested and undigested dairy manure. Ammonia in dairy manure can be distilled under a low vacuum at a temperature below the normal boiling point of water and absorbed in a sulfuric acid solution to produce ammonium sulfate as a value-added product. Specific objectives are to 1) evaluate effects of temperature, low vacuum, and solids on ammonia recovery from dairy manure; 2) design an ammoniadistillation - acid absorption system to produce ammonium sulfate granules with dairy manure; 3) construct a pilot-scale vacuum distillation - acid absorption system and develop operational parameters; and 4) perform a farm-scale economic analysis of the developedtechnology across its life cycle. This project will fill a literature gap in the combined effects of temperature, low vacuum, and solids on ammonia distillation. Kinetic study with a pilotscale ammonia recovery system at different feed depth will support design for scale-up,broader applications. Coupling vacuum distillation - acid absorption with anaerobic digestion is anticipated to make ammonia recovery an economically viable technology. The technology to be developed is applicable to dairy farms without anaerobic digesters as well. |
Integrated Farm-Based Refining for Biofuel and Chemical Production | 1006820 | Liao, Wei | 09/01/2015 | 08/31/2020 | COMPLETE | EAST LANSING | Algae, Farm-based biorefining, Fungal fermentation, Solid digestate, anaerobic digestion, biodiesel, biolubricant | The renewable fuels, chemicals, biomaterials, and power derived from plant biomass can make important contributions to energy security, rural economic development, and environmental quality. In particular, fossil energy dependence can be reduced by accelerating the development of renewable alternatives to stationary power and transportation fuel, and the United States intends to displace up to 30% of the nation's gasoline consumption, and 10% of total industrial and electric power demand by 2030. Agricultural residues are an underutilized reservoir of lignocellulosic biomass. As a result, these residues have great potential as feedstock for the production of renewable bio-based fuels and chemical products, and they could ultimately replace a non-trivial fraction of current fossil fuel use. However, the challenges associated with both the feedstock logistics and the conversion technology are the major economic barriers hindering the commercialization of lignocellulose-based biorefining.Systems integration approaches considering a concurrently engineered set of conversion processes may offer the opportunity to alleviate feedstock logistical problems and improve conversion efficiency. Therefore, the goal of the proposed study aims at developing an integrated farm-based biorefining concept that combines anaerobic digestion, algal cultivation, and biofuel and chemical production on lignocellulosic feedstock (animal manure and corn stover), makes use of synergies between process streams, and produces multiple fuel and chemical products (methane, biodiesel, biolubricant, and algal biomass), which results in improving carbon utilization efficiency and potentially improves the economics of the net process. In order to achieve the project goal, three specific objectives will be fulfilled in the coming five years: 1) optimize anaerobic microbial communities to improve the efficiency of anaerobic digestion and produce stabilized solid digestate; 2) construct a robust algal assemblage for outdoor open-pond culture system; and 3) develop conversion processes to turn AD fiber into fuels and chemicals.The outcomes of the proposed research will lead to a novel farm-based biorefining system for biofuels/chemical production with minimum water/nutrient/energy consumption. The implementation of such system will create great economic value for agricultural industry, and further stimulate job creation, farm profit, and rural development. Thus, the proposed research fits well into the mission of AgBioResearch that is to engage in innovative, leading-edge research that combines scientific expertise with practical experience to generate economic prosperity, sustain natural resources, and enhance the quality of life in Michigan, the nation, and the world. | The goal of the proposed study will be to develop an integrated farm-based biorefining concept that combines anaerobic digestion, algal cultivation, and biofuel and chemical production on lignocellulosic feedstock (animal manure and corn stover), makes use of synergies between process streams, and produces multiple fuel and chemical products (methane, biodiesel, and algal biomass), which results in improve carbon utilization efficiency and potentially improves the economics of the net process. In order to achieve the goal, three specific objectives will be fulfilled in the coming five years: 1) optimize anaerobic microbial communities to improve the efficiency of anaerobic digestion and produce stabilized solid digestate; 2) construct a robust algal assemblage for outdoor open-pond culture system; and 3) develop conversion processes to turn AD fiber into fuels and chemicals. |
Prediction and Control of the Performance of Anaerobic Digestion of Animal Manure through Metagenomics for Renewable Energy and a Sustainable Environment | 1000723 | Zheng, Guolu | 09/01/2013 | 08/31/2017 | COMPLETE | JEFFERSON CITY | Anaerobic digestion; Animal manure; Computational modeling; Antibiotic resistance genes; Pathogens | Improper collection and disposal of untreated animal waste can lead to serious pollution problems, such as pathogen contamination, spread of antibiotic resistance, and nutrient overflow, which pose risks to the environment and to public health. Unfortunately, the current animal waste treatment systems and practices are often inadequate. Anaerobic digestion technologies are superior both environmentally and financially when compared with traditional waste management systems, such as manure storages and lagoons. Anaerobic digestion is a biological process by which organic material, such as animal wastes, are decomposed in the absence of oxygen, producing stabilized sludge of agricultural value as well as methane (bio-gas), a renewable energy source. However, studies indicate that antibiotic resistance can survive anaerobic digestion. In addition, problems such as low methane yield and process instability are often encountered in anaerobic digestion. This project is to use computer to analysesthe correlation between theout puts of anaerobic digestion and themicrobial population, rather than on a few microorganisms (current methods), in the waste. Based on the computational relationship, we expect tomaximize the yield of methane (bio-gas), increase the process stabilization of anaerobic digestion, and the mitigation of pathogens and antibiotic resistance genes. | The goal of this proof-of-principle project is to eliminate/reduce the spread of the pathogens and antibiotic resistant genes associated with animal waste while maximizing the use of animal waste as a source of renewable energy and fertilizer. The specific objectives of this project are the following: Objective 1: Maximize the yield of methane, the stability of the anaerobic digestion, and the mitigation of pathogens and antibiotic resistance genes. Objective 2: Identify and use key microbial indicators for monitoring and control of the performance of anaerobic digestion to prevent its failure. |
Integration of bioproducts and bioenergy production with agricultural waste treatment | 1000222 | Hu, B | 10/01/2013 | 09/30/2016 | COMPLETE | MINNEAPOLIS | anaerobic digestion, fungal pelletization, biogas, nutrient removal | Several technical barriers are preventing the application of anaerobic digestion in the livestock farms. The foremost technical change needed to improve the economics of digester systems is to modify and amend the anaerobic digestion process to maximize biogas production for electricity produced as well as to generate other cash products to utilize the heat and offset the cost. AD converts organic N and P to ammonia and phosphate while total N and P remain constant. Further treatment processes need to be developed to remove and utilize the remaining N and P in the waste stream. To solve the above mentioned issues, firstly, we will be focusing on two additional processes that can be integrated into current AD systems so that the benefits of the whole system can be maximized. These two processes include pretreatment for anaerobic digestion and culture of filamentous fungi for phosphorus removal. A final case study will integrate all the research components: (i) co-digesting swine manure with other carbon-rich waste materials to increase the biogas generation and pretreat the biomass for phosphorus recovery; (ii) thermally treat the digestion effluents for fungal growth; (iii) growing filamentous fungal cells on to produce fungal biomass as biological phosphorous fertilizer and to enable the digestion effluent with a more balanced nitrogen/phosphorous ratio for use as a soil conditioner and plant fertilizer. | We are proposing to develop a new two-stage anaerobic digestion, including the first phase as the thermal/thermochemical treatment process, where solids from dairy manure and organic food waste materials are hydrolyzed and solubilized, and then the second stage as the anaerobic co-digestion on the UASB reactor. We also want to develop a new concept of pelletized cell cultivation for the production of microbial cell biomass via filamentous fungi and other microorganisms. |
Improving the Sustainability and Quality of Food and Dairy Products from Manufacturing to Consumption via Process Modeling and Edible Packaging | 0438139 | TOMASULA M M | 04/13/2020 | 11/30/2021 | COMPLETE | WYNDMOOR | MILK, CASEIN, DAIRY, ECONOMICS, CLIMATE, CHANGE, WASTE, STREAMS, ENERGY, USE, ELECTROSPINNING, MICRON, SCALE, CHEESE, WHEY, QUALITY, GREENHOUSE, GASES, WATER, RECOVERY, SIMULATION, MODEL, EDIBLE, FILMS, AND, COATING, NANOTECHNOLOGY, SHELF, LIFE | Not applicable | 1: Integrate new processes into the Fluid Milk Process Model (FMPM) to determine the effects of reductions in energy use, water use or waste on commercial dairy plant economics and greenhouse gas emissions. 1a: Develop benchmark simulations for configurations of stirred, set and strained curd yogurt processing plants in the U.S. that quantify energy use, economics, and greenhouse gas emissions, validated using data from industry. 1b: Use process simulation for evaluation of possible alternatives of whey utilization for the strained curd method of yogurt manufacture. 2: Integrate properties of edible films and coatings from dairy and food processing wastes with formulation strategies to better target commercial food and nonfood applications. 2a: Investigate thermal and mechanical properties of dairy protein-based edible films and coatings in real-life storage and utilization conditions. 2b: Apply new property findings to the investigation of useful and/or sustainable applications utilizing edible milk protein films. 3: Investigate the effects of different film-making technologies to manipulate the physical and functional properties of films and coatings made from agricultural materials. 3a: Investigate the effect of protein conformation on the ability to electrospin caseinates in aqueous solution and in the presence of a polysaccharide. 3b: Investigate the use of fluid milk, nonfat dry milk and milk protein concentrates as a source for production of electrospun fibers. 3c: Investigate the effects of edible and non-edible additives to the electrospun polysaccharide-caseinate fibers in aqueous solution. 4. Investigate techniques for separating components of dairy waste to determine their potential as ingredients. [C1,PS1A] 5. Investigate technologies for large-scale production of the ingredients identified in Objective 4, with products targeted to food applications. [C1, PS1A]. |
Improvement of Soil Management Practices and Manure Treatment/Handling Systems of the Southern Coastal Plain | 0431207 | SZOGI A A | 07/27/2016 | 07/05/2021 | ACTIVE | FLORENCE | ANIMAL, AMMONIA, NITROGEN, PLANTS, PYROLYSIS, FERTILIZER, WATER, COVER, CROP, REDUCED, TILLAGE, NITRIFICATION, TREATMENT, ANAMMOX, EMISSIONS, SOIL, MANAGEMENT, DISCARDED, SOILS, SUSTAINABLE, PRODUCTION, PHOSPHORUS, REMOVAL, WASTE, SOLIDS, CARBON, GENES, GAS, PAHTOGEN, MANURE, QUALITY, RESIDUE, BIOCHAR, AMENDMENT, NITROUS, OXIDE | Not applicable | 1. Develop and test improved tillage and biomass management practices to enhance soil health and long-term agricultural productivity in the Southeastern Coastal Plain. 2. Develop manure treatment and handling systems that improve soil health and water quality while minimizing the emissions of greenhouse gases, odors and ammonia and the transport of phosphorus and pathogens. Subobjective 2a. Develop improved treatment systems and methods for ammonia and phosphorus recovery from liquid and solid wastes using gas-permeable membrane technology. Subobjective 2b. Develop improved biological treatment systems for liquid effluents and soils based on deammonification reaction using ARS patented bacterial anammox and high performance nitrifying sludge cultures. Subobjective 2c. Improve the ARS patented â¿¿Quick Washâ¿? process for phosphorus recovery. Subobjective 2d. Assess treatment methods for their ability to reduce or eliminate pathogens and cell-free, microbially-derived DNA from agricultural waste streams. Subobjective 2e. Improved manure treatment and handling systems, and management strategies for minimizing emissions. Subobjective 2f. Assess the impact of manure treatment and handling systems on agricultural ecosystem services for soil, water, and air quality conservation and protection. 3. Develop beneficial uses of agricultural, industrial, and municipal byproducts, including manure. Subobjective 3a. Evaluate application of designer biochars to soils to increase crop yields while improving soil health, increasing carbon sequestration, and reducing greenhouse gas emissions. Subobjective 3b. Develop methods and guidelines to remediate mine soils using designer biochars. Subobjective 3c. Evaluate the agronomic value of byproducts produced from emerging manure and municipal waste treatment technologies. |
Sorghum Biorefining: Integrated Processes for Converting all Sorghum Feedstock Components to Fuels and Co-Products | 0427783 | NGHIEM N P | 10/29/2014 | 10/28/2019 | ACTIVE | WYNDMOOR | SWEET, SORGHUM, GRAIN, SORGHUM, BIOMASS, SORGHUM, ETHANOL, BUTANOL, PLATFORM, CHEMICALS, VALUE-ADDED, CO-PRODUCTS, CELLULOSE, HEMICELLULOSE, LIGNIN, METHANE, BIOREFINERY | Not applicable | 1: Develop technologies that enable the integrated processing of sorghum grains and sweet sorghum juice at existing biofuels production facilities and that enable the commercial production of new co-products at sorghum-based biorefineries. 1A: Develop technologies that enable the integrated processing of sorghum grains at existing biofuels production facilities. 1B: Develop technologies that enable the integrated processing of sweet sorghum juice at existing biofuels production facilities. 1C: Develop technologies that enable the commercial production of new co-products at sorghum-based biorefineries. 2: Develop technologies that enable the commercial production of marketable C5-rich and C6-rich sugar streams from sorghum lignocellulosic components. 2A: Develop technologies that enable the commercial production of marketable C5-rich sugar streams from sorghum lignocellulosic components. 2B: Develop technologies that enable the commercial production of marketable C6-rich sugar streams from sorghum lignocellulosic components. 3: Develop technologies that enable the commercial conversion of sorghum lignocellulosic components into fuels and industrial chemicals. 3A: Develop technologies that enable the commercial production of industrial chemicals from the C5-rich sugar stream obtained from the enzymatic hydrolysis of pretreated sorghum cellulosic components. 3B: Develop technologies that enable the commercial production of additional ethanol and industrial chemicals from the C6-rich sugar stream obtained from the enzymatic hydrolysis of the cellulose-enriched residue. 3C: Develop technologies that enable the use of byproducts and wastes generated in ethanol and other fermentation processes in the sorghum biorefinery for production of energy and chemicals. |
Technologies for Improving Industrial Biorefineries that Produce Marketable Biobased Products | 0427427 | ORTS W J | 10/01/2014 | 09/30/2019 | COMPLETE | ALBANY | BIOPRODUCTS, BIOENERGY, SORGHUM, BIOMASS, POLYHYDROXYALKANOATES, POLYSACCHARIDES, BIOMASS, ENZYMES, FIBERS, COMBINATORIAL, CHEMISTRY, DIRECTED, EVOLUTION, NANOTECHNOLOGY, NANO-ASSEMBLIES, CELLULOSE, PECTIN, DIACIDS, POLYMERS, POLY(HYDROXYBUTYRATE), PHA, BIOFUELS, CITRUS, ALMONDS, EXTRACTION, RENEWABLE, FERMENTATION, BIOREFINERY, FOOD, WASTE, ENZYMES | Not applicable | This project provides technological solutions to the biofuels industry to help the U.S. meet its Congressionally mandated goal of doubling advanced biofuels production within the next decade. The overall goal is to develop optimal strategies for converting agricultural biomass to biofuels and to create value-added products (bioproducts) that improve the economics of biorefining processes. Specific emphasis is to develop strategies for biorefineries located in the Western United States by using regionally-specific feedstocks and crops, including sorghum, almond byproducts, citrus juicing wastes, pomace, municipal solid wastes (MSW), and food processing wastes. These feedstocks will be converted into biofuels, bioenergy and fine chemicals. Objective 1: Develop commercially-viable technologies for converting agriculturally-derived biomass, crop residues, biogas, and underutilized waste streams into marketable chemicals. Research on converting biogas will involve significant collaboration with one or more industrial partners. Sub-objective 1A: Provide data and process models for integrated biorefineries that utilize sorghum and available solid waste to produce ethanol, biogas and commercially-viable coproducts. Sub-objective 1B. Convert biogas from biorefining processes into polyhydroxyalkanoate plastics. Sub-objective 1C: Apply the latest tools in immobilized enzymes, nano-assemblies, to convert biomass to fermentable sugars, formaldehyde, and other fine chemicals. Objective 2: Develop commercially-viable fractionation, separation, de-construction, recovery and conversion technologies that enable the production of marketable products and co-products from the byproducts of large-scale food production and processing. Sub-objective 2A: Add value to almond byproducts. Sub-objective 2B: Apply bioenegineering of bacteria and yeast to produce diacids, ascorbic acid and other value-added products from pectin-rich citrus peel waste. Sub-objective 2C: Convert biomass into commercially-viable designer oligosaccharides using combinatorial enzyme technology. |
Integration of Site-Specific Crop Production Practices and Industrial and Animal Agricultural Byproducts to Improve Agricultural Competitiveness and Sustainability | 0425032 | JENKINS J N | 10/01/2013 | 09/30/2018 | ACTIVE | MISSISSIPPI STATE | PRECISION, FARMING, GEOGRAPHIC, INFORMATION, SYSTEM, (GIS), REMOTE, SENSING, (RS), WATER, SWINE, ANIMAL, WASTE, AMMONIA, SOIL, NUTRIENTS, PATHOGEN, NITROGEN, LITTER, LEACHING, CROPS, RUNOFF, BACTERIA, BROILER | Not applicable | Obj 1. Develop ecological and sustainable site-specific agriculture systems, for cotton, corn, wheat, and soybean rotations. 1: Geographical coordinates constitutes necessary and sufficient cornerstone required to define, develop and implement ecological/sustainable agricultural systems. 2: Develop methods of variable-rate manure application based on soil organic matter (SOM), apparent electrical conductivity, elevation, or crop yield maps. 3: Relate SOM, electrical conductivity, and elevation. Obj 2. Develop sustainable and scalable practices for site-specific integration of animal agriculture byproducts to improve food, feed, fiber, and feedstock production systems. 1: Quantify effects of management on sustainability for sweet potato. 2: Balance soil phosphorus (P)/micro¿nutrients using broiler litter/flue gas desulfurization (FGD) gypsum. 3: Effects of site-specific broiler litter applications. 4: Manure application/crop management practices in southern U.S. 5: Compare banded/broadcast litter applications in corn. 6: Develop reflectance algorithms for potassium in wheat. 7: Determine swine mortality compost value in small farm vegetable production. Obj 3. Analyze the economics of production practices for site-specific integration of animal agriculture byproducts to identify practices that are economically sustainable, scalable, and that increase competitiveness and profitability of production systems. 1: Evaluate economics of on-farm resource utilization in the south. Obj 4. Determine the environmental effects in soil, water, and air from site-specific integration of animal agricultural and industrial byproducts into production practices to estimate risks and benefits from byproduct nutrients, microbes, and management practices. 1: Quantitatively determine bioaerosol transport. 2: Role of P and nitrogen (N) immobilizing agents in corn production. 3: Assess impact of management on water sources. 4: Impact of FGD gypsum/rainfall on mobilization of organic carbon/veterinary pharmaceutical compounds in runoff/leached water. 5: Assess soil microbial ecology, antibiotic resistance, and pathogen changes using manure and industrial byproducts in crop production systems. 6: Develop nutrient management practices for sustainable crop production. 7: Develop nutrient management practices for reclaimed coal mine soils. 8: Determine effects of poultry litter/swine lagoon effluent in swine mortality composts. 9: Determine survival of fecal bacterial pathogens on contaminated plant tissue. 10: Identify agricultural/industrial byproducts that modify the breakdown of organic matter. Obj 5. Integrate research data into regional and national databases and statistical models to improve competitiveness and sustainability of farming practices. 1: Develop broiler house emission models. 2: Apply quantitative microbial risk assessment models to animal agriculture/anthropogenic activities. Obj 6. Develop statistical approaches to integrate and analyze large and diverse spatial and temporal geo-referenced data sets derived from crop production systems that include ecological and natural resource based inputs. 1: Develop novel methods of imaging processing. |
Efficient Management and Use of Animal Manure to Protect Human Health and Environmental Quality | 0420394 | SISTANI K R | 10/01/2010 | 09/30/2015 | COMPLETE | BOWLING GREEN | ANIMAL, MANURE, ODOR, NUTRIENT, BYPRODUCT, ATMOSPHERIC, EMISSIONS, KARST, TOPOGRAPHY, PATHOGEN, TREATMENT, TECHNOLOGY, MICROORGANISMS | Not applicable | The overall goal of the research project which is formulated as a real partnership between ARS and Western Kentucky University (WKU) is to conduct cost effective and problem solving research associated with animal waste management. The research will evaluate management practices and treatment strategies that protect water quality, reduce atmospheric emissions, and control pathogens at the animal production facilities, manure storage areas, and field application sites, particularly for the karst topography. This Project Plan is a unique situation in the sense that non-ARS scientists from WKU are included on an in-house project to conduct research under the NP 214. The objectives and related specific sub-objectives for the next 5 years are organized according to the Components (Nutrient, Emission, Pathogen, and Byproduct) of the NP 214, which mostly apply to this project as follows: 1) develop improved best management practices, application technologies, and decision support systems for poultry and livestock manure used in crop production; 2) develop methods to identify and quantify emissions, from poultry, dairy and swine rearing operations and manure applied lands; 3) reduce ammonia, odors, microorganisms and particulate emissions from dairy, swine and poultry operations through the use of treatment systems (e.g. biofilters and scrubbers) and innovative management practices; 4) perform runoff and leaching experiments on a variety of soils amended with dairy, swine, or poultry manures infected with Campylobacter jejuni (C. jejuni), Salmonella sp. or Mycobacterium avium subsp. paratuberculosis (MAP) and compare observed transport with that observed for common indicator organisms such as E. coli, enterococci, and Bacteriodes; and 5) use molecular-based methodologies to quantify the occurrence of pathogens and evaluate new methods to inhibit their survival and transport in soil, water, and waste treatment systems. |
BIOLOGICAL TREATMENT OF MANURE AND ORGANIC RESIDUALS TO CAPTURE NUTRIENTS AND TRANSFORM CONTAMINANTS | 0420063 | MULBRY III W W | 04/03/2010 | 04/02/2015 | COMPLETE | BELTSVILLE | SWINE, WASTE, SOIL, POULTRY, MANAGEMENT, DAIRY, EMMISION, MANURE, TREATMENT, ENVIRONMENTAL, BYPRODUCTS, FATE, ORGANIC, BIOENERGY, COMPOST, RESIDUE, DESTRUCTION, NUTRIENTS, APPLICATIONS, ANAEROBIC, DIGESTION, ALGAL, METHANE, AMMONIA, ANTIBIOTIC | Not applicable | Development and evaluation of manure treatment systems. Specific objectives: (1) Develop treatment technologies and management practices to reduce the concentrations of pharmaceutically active compounds (antibiotics and natural hormones) in manures, litters, and biosolids utilized in agricultural settings; (2) Develop management practices and technologies to minimize greenhouse gas (GHG) emissions from manure and litter storage and from composting operations by manipulating the biological, chemical, and physical processes influencing production and release of ammonia and greenhouse gases during composting; (3) Develop technology and management practices that improve the economics and treatment efficiency of anaerobic digestion of animal manures and other organic feedstocks (e.g. food wastes, crops/residues) for waste treatment and energy production. |
BIOREFINING PROCESSES | 0418775 | ORTS W J | 11/16/2009 | 09/30/2014 | COMPLETE | ALBANY | BIOFUELS, EFFICIENCY, SEPARATION, CORN, MOLECULAR, ENZYMES, WHEAT, SORGHUM, PROTEIN, FERMENTATION, ENERGY, ETHANOL, STARCH, ALCOHOL, EVOLUTION, BIOREFINERY, REFINING | Not applicable | Objective 1: Develop enzyme-based technologies (based on cleaving specific covalent crosslinks which underlie plant cell wall recalcitrance) thereby enabling new commercially-viable* saccharification processes. Objective 2: Develop new enzyme-based technologies that enable the production of commercially-viable* coproducts such as specialty chemicals, polymer precursors, and nutritional additives/supplements from raw or pretreated lignocellulosic biomass. Objective 3: Develop pretreatment technologies that enable commercially-viable* biorefineries capable of utilizing diverse feedstocks such as rice straw, wheat straw, commingled wastes (including MSW), sorghum, switchgrass, algae, and food processing by-products. Objective 4: Develop new separation technologies that enable commercially-viable* and energy-efficient processes for the recovery of biofuels, biorefinery co-products, and/or bioproducts from dilute fermentation broths. |
Renewable energy systems to improve small farm sustainability | 0231634 | Zehnder, Geoffrey | 07/20/2012 | 09/30/2016 | COMPLETE | CLEMSON | alternative energy, anaerobic digestion, black soldier fly digestion, farm, passive solar greenhouse heating, waste bioconversion | Increasing consumer demand for locally-grown produce in South Carolina and the region has created significant economic opportunities for small-scale growers through direct and wholesale marketing. However, with limited available resources producers need to find ways to reduce operating costs and identify new sources of revenue to give them a competitive edge in the marketplace. On-farm bioenergy production can help to offset the increasing costs of petroleum based fuels and fertilizers and improve farm profitability. Furthermore, compared to petroleum-based energy, bioenergy can reduce carbon dioxide emissions through its role in the carbon cycle. There are many ways to turn biological materials into energy and to reduce on-farm energy costs, although at present only a few represent practical and cost-effective options for small, limited resource farming operations. To our knowledge very few studies have been done in South Carolina to develop, demonstrate and evaluate renewable and sustainable energy systems for small farms as described below. This study will evaluate three energy systems for small farms; anaerobic digestion of waste for production of biogas, black soldier fly digestion of waste for production of compost and other value added products, and hydronic and passive solar greenhouse heating systems. Outputs from the project will include information on critical operating parameters for scale appropriate anaerobic digester and black soldier fly composting systems to be built at the Clemson Organic Farm. System costs and the value of energy savings and value-added products will be determined. Installation and operating costs and energy savings provided by the passive solar and hydronic heating systems will be quantified, and the systems will be evaluated for season extension vegetable production. The pilot systems will also be available for demonstration and training purposes. Information gained from design, construction and operation of the different systems will be utilized in development of recommendations to farmers interested in implementing the systems to reduce energy costs and increase farm profitability. The projected impact of the project will be to help farmers increase energy self-reliance and reduce their energy costs, and to provide them with information on how to create value-added products through bioconversion of waste materials. | The goal of the proposed research will be to help farmers increase energy self-reliance and reduce their energy costs, and to provide them with information on how to create value-added products through bioconversion of waste materials. Objectives: 1. Design, build and evaluate a scale-appropriate anaerobic digester system to generate biogas to provide supplemental greenhouse heating and to refrigerate the walk-in cooler at the Clemson Organic Farm. 2. Design, build and evaluate a Black Soldier Fly composting system at the Clemson Organic Farm for bioconversion of food and farm waste into compost, animal feed, and oil for biodiesel fuel production. 3. Compare the costs and energy savings of hydronic heating and passive solar components with conventional greenhouse heating systems for season extension vegetable production at the Clemson Organic Farm. |
Microbial Processes for Bioproducts and Biofuels Production | 0231133 | Liu, Yan | 09/01/2012 | 08/31/2017 | COMPLETE | EAST LANSING | algal cultivation, biofuels, biopesticide, bioproducts, chitosan, enzyme, fungal fermentation, high value protein, lipid, mix culture, transgenic algae | Biobased fuels and chemicals can make important contributions to U.S. energy security, rural economic development, and the environment. Heterotrophic conversion of organic substances (fungi and bacteria) and autotrophic conversion of inorganic compounds (algae and cyanobacteria) are two major microbial systems to produce these biofuels and chemicals. Numerous studies have been conducted in the past several decades. However, significant challenges still exist in successful realization of these microbial processes for biofuels and chemical production The recalcitrant structure of organic substances (lignocellulosic materials), dispersed nature of energy crops and agricultural residues, and limited capacity of current available industrial strains to co-utilize C5 and C6 sugars, are main barriers for heterotrophic conversion; while, long-term system stability, water and nutrient requirements, and harvesting of biomass hurdle autotrophic conversion. Addressing these challenges should be of the highest research priority in order to develop next-generation biofuels and chemicals. In response to researching and developing new routes towards effective and sustainable biofuels/chemical production systems, my research foci are mainly on heterotrophic fungal platform and autotrophic algal platform. Studies on the fungal platform include fungal cellulosic enzyme production, fungal biojet conversion, and fungi-based pesticides production, and studies on the algal platform include mixture culture of algal assemblage for lipid accumulation and water reclamation, and transgenic algal strains for pharmaceutical/neutraceutical production. The outcomes of the proposed research will lead to novel bioprocesses for biofuel/chemical production with minimum water/nutrient/energy consumption. The implementation of these processes will create great economic value for the agricultural industry, and further stimulate job creation, farm profit, and rural development. | The long-term research goal is to develop environmentally benign bioprocesses to effectively utilize various renewable resources (crop residues, animal wastes, industrial organic wastes and carbon dioxide) for value-added energy/chemical production, with a specific aim towards making scientific and technological advances to meet demands of the emerging bioeconomy. The objective of the proposed research is to demonstrate novel fuel/chemical production systems that apply advanced fungal and algal cultivation technologies to produce enzymes, lipids, biopesticides from agricultural/industrial wastes. The objective will be achieved by pursuing following specific aims under fungal and algal platforms in five years. Specific Aims for Fungal Platform: 1. Investigating enzyme production using pelletized fungal culture; 2. Enhancing lipid accumulation in fungal biomass; 3. Enhancing biopesticide (chitosan) production from fungal cultivation. Specific Aims for Algal Platform: 1. Constructing algal/bacterial consortium to improve lipid accumulation and facilitate biomass precipitation; 2. Developing a culture strategy to enhance lipid/starch accumulation; 3. Developing transgenic algal culture for biofuels and value-added protein production. The expected outputs from the project include: 1. Peer reviewed articles and book chapters Publishing peer reviewed journal articles on those high-impact journals in the biofuels/chemical field is one of the best approaches to disseminate the research outcomes in relevant scientific communities. 2. Workshops Smaller groups of targeted parties from both academia and industries with much higher and more active engagement on specific research topics (algal or fungal related) will be invited to MSU campus. Research presentation, group discussion, system demonstration, and facility tour will be organized for the workshops to give the audience the first-hand information, and let them better understand the outcomes of the on-going biofuel/chemical research. 3. Media Potential media for biofuel/chemical research are Discovery Channel, Lansing State Journal, Biomass Products & Technology, Resource - Engineering & Technology for Sustainable World etc. 4. Industrial partners Collaborating with industrial and agricultural partnerships will enable applied and relevant research to be quickly commercialized. Considering the intellectual merits related with some of the proposed research, MSU technologies will be invited to be part of the conversation with the partners to protect potential intellectual properties. 5. Internet The research group website will be upgraded to include a dynamic web-based database. All updated research news and outcomes, educational and training materials will be updated in a timely manner. A much larger audience from different area such as agriculture, food/pharmaceutical/biofuels industries, K-16 educators, and general public will be targeted by the internet dissemination approach. |
Bioenergy and Biofuels Production from Lignocellulosic Biomass via Anaerobic Digestion and Fisher-Tropsch Reaction | 0231118 | Zhao, Lingying | 09/01/2012 | 08/31/2017 | COMPLETE | Columbus | Lignocellulosic biomass, anaerobic digestion, biogas, digestate, dry fermentation, lignocellulosic biomass, liquid hydrocarbon fuels, solid state | Integrated anaerobic digestion system (iADs) is an Ohio State University (OSU) patent technology (WO/2011/020000) that combines solid state anaerobic digestion (SS-AD) with commercially available liquid anaerobic digestion (L-AD). This combination mitigates technical challenges associated with each alone, and creates synergistic benefits that reduce cost, improve efficiency, and increase biogas production from a wide range of feedstocks. The biogas in turn is converted into bioenergy and biofuels, while the SS-AD digestate can be used to enhance soil quality (closing an ecological loop). Here, we propose to optimize the SS-AD technology for biogas production from lignocellulosic biomass; develop the upstream and downstream logistics around the iADs; and assess the potential environmental, economic, and social benefits of iADs. Pilot scale SS-AD tests with different feedstocks will be performed to validate the lab scale results and provide the critical data necessary to convince our industrial collaborators to move this technology into the next stage of commercialization, namely, the demonstration phase (which is beyond the scope of this grant). To achieve the objectives of the proposal, we have assembled a multidisciplinary team of scientists in the areas of soil and carbon sequestration (Dr. Rattan Lal, OSU), feedstock supply logistics (Dr. Scott Shearer, OSU), feedstock logistics and process modeling (Dr. Sudhagar Mani, University of Georgia (UGA)), anaerobic digestion (Dr. Yebo Li, OSU), anaerobic biology (Dr. Z. T. Yu, OSU), catalyst synthesis (Dr. Fei Yu, Mississippi State University (MSU)), and LCA (Bhavik Bakshi, OSU). The team will work closely with industry collaborators including quasar energy group (quasar), American Electric Power (AEP), Aloterra Energy, Marathon, CNH, AgSTAR and others on this project. The outcomes of the proposed project include: (1) optimization of novel iADs technology using effluent of L-AD as inoculum and nitrogen source for SS-AD, with increased knowledge about the microbiome in the SS-AD process; (2) miscanthus and crop production with SS-AD digestate that leverages BCAP-funded Miscanthus production for development of Miscanthus feedstock logistics (planting, harvesting and storage systems); (3) restoration and soil quality enhancement of marginalized lands; (4) assessment of the carbon sequestration in soils, trees and wetlands, and of the magnitude by which gaseous emissions in biofuel production process can be off-set by net gains in the ecosystem carbon pool; (5) A flexible platform system for exploring innovative uses of AD products including testing the techno-economic feasibility of production of liquid hydrocarbon fuels from biogas; (6) Positive economic, environmental, and social impact of iADs. The impacts of the project include: (1) extension of the feedstocks of AD from animal manure to all kinds of organic waste; (2) production of liquid transportation fuels production from organic waste; (3) assessment of the net ecosystem carbon budget in biofuel production. | The long term goal of this project is to commercialize an integrated anaerobic digestion system (iADs) that promises cost competitive bioenergy and biofuels production from lignocellulosic biomass. The specific objectives of this proposal are to: (1)Develop a sustainable production and supply logistics system to provide multiple feedstocks to iADs for bioenergy and biofuels production; (2) Assess impacts of SS-AD digestate application to biofuel crops grown in marginal lands on soil quality and hydrological, microclimatic, and agronomic parameters; (3) Develop a pretreatment technology to increase lignocellulosic biomass digestibility and optimize SS-AD technologies to maximize biogas production; (4)Integrate feedstock supply chains with a pilot scale iADs to evaluate its potential for commercialization; (5) Develop a biogas to liquid hydrocarbon fuels (BTL) technology via catalytic reforming and Fisher-Tropsch (F-T) synthesis; (6) Use Life Cycle Assessment (LCA) and process economic models to evaluate the proposed system performance and its environmental, economic, and social impacts on sustainability. |
US Dairy Adoption of Anaerobic Digestion Systems Integrating Multiple Emerging Clean Technologies:Climate, Environmental and Economic Impact | 0230080 | Kruger, Chad | 08/01/2012 | 07/31/2016 | COMPLETE | Pullman | CAFOs, anaerobic digestion, anaerobic digestion systems, biofertilizers, clean water, climate mitigation, dairies, nutrient recovery, pyrolysis, renewable energy, techno-economic evalation, water recovery | Based on considerable preliminary research, we propose that anaerobic digestion (AD) systems are the most effective means for reducing agricultural greenhouse gas (GHG) emissions while also improving air/water quality, nutrient cycling impacts, and farm economics. Our projects goals are to quantify the climate, air, water, nutrient and economic impacts of integrating next generation technologies in AD systems within US animal feeding operations (AFOs), contribute to increased AD adoption rates, and reduce GHG impacts. The project focuses on AD for dairy operations, although lessons learned are readily applicable to feedlot, swine, and poultry operations. We emphasize a systems approach in order to address AFO nutrient and economic concerns while enhancing GHG mitigation. Evidence suggests that addressing these nutrient and economic issues improves marginal returns on investment and could enhance currently poor U.S. AD adoption rates. Successful AD systems will integrate emerging technologies, complementary to AD, which are being developed by the project team through leveraged research: pyrolysis (P), nutrient recovery (NR), and water recovery (WR).<p> Our approach utilizes a multi-disciplinary team to quantify (against baseline) multiple scenarios for AD systems with varying combinations of complementary technology. Analysis against various levels of technology incorporation and farm scenarios will allow us to determine both direct as well as upstream and downstream impacts of a system or technology on total and component (CO2, CH4, N2O) GHG emissions, nutrient and energy flows, project economics, and crop yields. Project outputs will provide accessible technical information to industry, regulatory agencies, and private carbon market entities, overcoming previously identified barriers to new technology adoption. Together, the project will assist US AFOs, rural communities, and the AD industry in adopting improved agricultural waste management and move AFOs from a GHG source to a carbon sink. We will leverage relevant research (completed or ongoing) to complete assigned objectives and tasks, thereby allowing for a wealth of outputs using a relatively short timeline and budget. Specific project objectives include: (1) enhancement of pyrolysis platform through modification of resulting bio-char for nutrient recovery; (2) agronomic evaluation of AD system bio-fertilizer and co-products to determine potential for carbon sequestration, GHG mitigation, and crop yield; (3) GHG emissions, nutrient-flow, and crop yield modeling analysis; (4) techno-economic analysis; and (5) extension of relevant research results to key stakeholders best positioned to facilitate AD system adoption on AFOs. | Project goals are to quantify the climate, air, water, nutrient and economic impacts of integrating emerging, next generation technologies within anaerobic digestion (AD) systems on US animal feeding operations (AFOs), primarily dairies, although lessons learned apply to feedlot, swine, and poultry operations. Systems are emphasized as evidence suggests that addressing AFO concerns regarding nutrients and economics improves marginal returns on investment and could enhance currently poor U.S. AD adoption rates. Successful AD systems will integrate emerging technologies, complementary to AD, which are being developed by the project team through leveraged research: pyrolysis, nutrient recovery, and water recovery. Analysis against various levels of technology incorporation and farm scenarios will allow for determination of both direct as well as upstream and downstream impacts of a system or technology on total and component (CO2, CH4, N2O) greenhouse gas (GHG) emissions, nutrient and energy flows, project economics, and crop yields. Project objectives include: (1) enhancement of pyrolysis platform through modification of bio-char for nutrient recovery; (2) agronomic evaluation of AD system bio-fertilizer and co-products; (3) GHG emissions, nutrient-flow, and crop yield modeling analysis; (4) techno-economic analysis; and (5) extension of relevant research results to key stakeholders. Project outputs will provide accessible technical information to industry, regulatory agencies, and private carbon market entities, overcoming previously identified barriers to new technology adoption. This proposal addresses priority areas related to research and extension for GHG mitigation and carbon sequestration within AFOs for reductions in agricultural emissions while improving sustainable joint use of nitrogen and water. |
Enhancing Greenhouse Gas Mitigation And Economic Viability Of Anaerobic Digestion Systems: Algal Carbon Sequestration And Bioplastics Produc | 0229956 | Feris, Kevin | 09/01/2012 | 08/31/2016 | COMPLETE | Boise | Algae, Anaerobic digestion, Bio-plastics, Bioproducts, Polyhydroxyalkanoates, Process Model, algae, anaerobic digestion, bio-plastics, biogas, bioproducts, carbohydrates, carbon sequestration, greenhouse gas mitigation, polyhydroxyalkanoates, process model | Over 9 million dairy cows generate an estimated 226 billion kg (249 million tons) of wet manure and produce approximately 5.8 billion kg of CO2 equivalents annually in the U.S. (BSSC 2008; Liebrand & Ling 2009). For an average 10,000 head dairy, decomposition of this organic waste produces ?6,000 tons of CH4, 74 tons of N2O, and 130,000 tons of CO2 per year, or ~290,000 tons of CO2 equivalents (USEPA 2011). These emissions constitute approximately 2.5% of the annual production of greenhouse gasses (GHGs) in the United States, and make dairies one of the largest single industry sources of GHG in the US (USEPA 2011). Anaerobic digestion (AD) can significantly reduce dairy GHG emissions by enhancing CH4 generation and capturing and converting CH4 to CO2 in a generator while producing electricity and offsetting farm energy usage. AD biogas could be used to generate >6,800 GWh/yr in power, roughly equivalent to the average annual electricity usage of 500,000 to 600,000 homes (U.S.EPA 2010). Recognizing the potential of ADs to mitigate GHG emissions and produce power, in January 2009, the Innovation Center (IC) for U.S. Dairy announced a voluntary goal to reduce GHG emissions 25% by 2020. Central to achieving this goal is the construction of approximately 1,300 new ADs, which the EPA estimates could reduce U.S. CH4 emissions by 90%. Despite industry support behind broad AD deployment, the on-the-ground reality is that AD projects are not always commercially feasible, due in part to generally low electricity rates. Perhaps more importantly, ADs emit relatively large quantities of GHGs in the form of CO2. Thus, new strategies are necessary to improve AD economics and consequently promote the adoption of AD as a mitigation strategy to achieve the ICs GHG reduction goals. To enhance dairy carbon (C) sequestration, this project will advance a novel integrated manure-to-commodities system that converts pre-fermented manure to bioenergy, sequesters carbon by converting volatile fatty acid (VFA)-rich fermenter supernatant to bioplastics, and sequesters AD effluents (CO2, nitrogen, phosphorus) by producing algae that can be harvested and returned to the AD to enhance PHA production and enhance overall C-sequestration. GHG reduction and C sequestration will be quantified and used to parameterize a system model and web-accessible management decision tool that will be developed at the Idaho National Laboratory. Research product and decision tool dissemination along with workforce and student training will be facilitated by connecting to an on-going, USDA funded outreach and education effort centered on biofuel literacy led by the University of Idaho's McCall Outdoor Science School (MOSS). The outcomes and impacts of this project will include changes in the agricultural knowledge system. Change in knowledge will come from applied research developing a novel approach to GHG reduction and economic development. Change in action will come from experimentally-based information generation and development of data driven decision tools with potential to lead to change in actions by agricultural producers. | We propose a novel strategy that enhances the utility of anaerobic digestion for reducing the greenhouse gas (GHG) footprint of dairy manure management. Additionally, we propose that by producing carbohydrate rich algal biomass and directing the fixed carbon (C) to a longer-term storage pool than biofuels (i.e. PHA-based bioplastics), we can further reduce the GHG footprint. The potential exists to make these systems net C sinks rather than sources, while simultaneously enhancing the overall process economics; thereby improving the likelihood that coupled AD-Algae-PHA systems will be adopted by the dairy industry. Our project objectives and milestones follow: Objective 1: Quantify C flow from manure to CH4 and polyhydroxyalkanoates (PHAs) via a two stage AD system. The goal of this task is to identify critical bioreactor operating conditions that maximize PHA synthesis and CH4 production and optimize carbon sequestration. Milestones/target dates: Manure fermentation potential investigations will be completed within the first 90 days of the project and the fermentation factorial will be completed over the subsequent 12 months. The PHA and AD investigations have been allocated 24 months. Objective 2: Quantify C-capture, characterize C-quality, and quantify nutrient recovery via algal production from AD effluent streams (e.g. gas and liquid). Assess C-sequestration potential of algal biomass as a fermenter feedstock to enhance PHA synthesis. Assess influence of spatial-temporal variability of algal community structure on these processes. Milestones/target dates: The algal cultivation systems will be assembled and baseline conditions determined in the first 6 months. 24 months is allocated for the remaining algal cultivation objectives. Objective 3: Develop and deploy user-friendly web-based management decision tools to quantify and parameterize GHG reduction, C-sequestration, and enhancement of AD commercial viability. Milestones/target dates: The model will be defined and functional specifications and input/output flows established within the first 6 months. Between year 1 and 2 individual sub-models will be wrapped and integrated into the overall process model. By the second year the web interface will be prepared. During the third year the web-based model will be demonstrated to stakeholders and decision-makers. Objectives 4 and 5: Produce the next generation of bio-product innovators and system operators by integrating undergraduate and graduate training and work force development. Develop an outreach and education program targeting dairy managers and AD system operators. Milestones/target dates: Student training will occur throughout the project. Outreach and educational programs will be delivered during years 2 and 3 of the project. Outputs: We will define optimal operating conditions for the AD, PHA, and Algal reactors, quantify carbon sequestration potential of the PHA and algal reactor systems, develop a web-based modeling tool, and train students and system operators. Project results will be communicated via manuscript publication, outreach and educational programs, and interactions with our stakeholder group. |
Accelerated Renewable Energy | 0228524 | MARKLEY, JOHN | 07/15/2012 | 07/14/2017 | COMPLETE | MADISON | Bio-diesel Bio-gas Ethanol, bio-diesel, bio-gas, cellulosic Fertilizer, custom Manure, dairy Polymer separations, economic analysis, ethanol, cellulosic, fertilizer, custom, manure, dairy, polymer separations, precision-ag | A dairy with 1,700 cows produces 15 tons of manure per day. To handle the manure, the dairy must recycle 2.5 million gallons of water per day. The conventional solutions to these problems are wash the manure into a lagoon, dredge and manure solids and haul them to fields. Manure on the fields may not provide the correct nutrients and is subject to running off and polluting rivers. Our goal is to demonstrate the economic feasibility on the scale of a large dairy farm (1,700) cows of converting the manure produced into valuable commodities including methane gas for heating purposes in the farm, fuel ethanol, and custom fertilizer. Part of the farm acreage (5%) will be devoted to oilseed production, which will be converted to biodiesel to power vehicles on the farm. Our approach utilizes biomass processing technology developed by a small Wisconsin business (Soil Net) and engineering and fabrication expertise of another small Wisconsin business (Braun Electric). We foresee a strong potential for commercialization of this technology and its widespread adoption. | We propose a public (University of Wisconsin-Madison) and private (Cottonwood Dairy; Soil Net, LLC; Braun Electric; Resource Engineering Associates, Inc.) collaboration that encompasses both R&D and prototypical farm-based demonstration of the four components of the BRDI FOA: 1. Feedstocks Development: The bioenergy generated will derive primarily from recycled cellulosic components of dairy manure, which have minimal food/fuel issues. 2. Bio-Fuels and Bio-based Products Development: The project will demonstrate/evaluate multiple sub-processes and associated "value added" bio-based co-products -- vegetable oil/meal; oil/biodiesel; cellulosic ethanol; bio-gas/manure digestion; recycled rinse water; low and high P (phosphorus) crop nutrients; and multiple cellulosic manure fiber "fractions" (for mulches, bedding, etc.). 3. Bio-Fuels and Bio-based Products Development Analysis: The project will evaluate (calibrate, implement, validate) economic, environmental, lifecycle, process efficiency, and mass balance analysis and incorporate these into a business decision/management framework. In particular, an analysis of the economics of scale of the various system components will form a major part of the research effort. 4. Use of Oil/Biodiesel for the Production of Grain or Cellulosic Ethanol: The proposed system will be capable of producing oil/biodiesel from vegetable oil seed produced on the farm. Our research will determine the economic benefits of biodiesel vs. purified vegetable oil for direct use in operating farm vehicles and machinery. The expected outcome is the demonstration of cost effective livestock manure separation and processing to produce bio-energy, bio-feedstocks, and value added co-products (mulch/fertilizers) for on-farm and off-farm ("export") markets that can be carried out at a variety of large/medium/small scales. This technology will provide opportunities to exploit readily available, relatively low value potential cellulosic bio-feedstocks-ones that largely avoid food/fuel concerns-to improve economic sustainability: on-farm substitution for purchased energy and feed/fertilizer nutrients or as potential farm revenue diversification; improve environmental sustainability. The approach will reduce GHG/carbon footprint, soil/nutrient losses, and potential manure borne pathogens; and, improve regional economic development. We have shown that a demand exists for many of the manure fiber (mulch/fertilizer) co-products. The flexibility to adopt one (or several) of process/flow components, sequentially, based on the specifics of extant farm infrastructure (manure type/volumes, manure handling/processing, etc.) increases the proposed project's commercialization potential. The extensive process/flow measurement and analysis R&D, at both lab/bench and commercial scale, will provide the analytic/measurement tools to evaluate the economic, environmental, food safety, and regional economic development impacts of this potential commercialization at a variety of resolutions (farm, county, region). |
A Biogas Heat Engine for Small to Mid-Sized Farms | 0226184 | Tesar, Joseph | 09/01/2011 | 02/28/2015 | COMPLETE | Ann Arbor | anaerobic digester, pathogen-free effluent, renewable energy,, biogas,, co-feeds., energy scavenging,, heat pump,, solar thermal,, tes,, thermal storage, | Non-technical Summary: The profitability of small and mid-sized dairy farms is strongly affected by increases in feed costs and energy costs. Unfortunately, farm operators have limited control of these factors, especially in the long term. New technology is needed to allow farmers to manage energy costs on their farms. One excellent solution is to use existing organic farm waste material to create energy via anaerobic digestion. Dairy operations (as well as other feeding sites) create copious amount of manure each day. By collecting this waste into an anaerobic digester, valuable biogas can be created and used by the farmer for pasteurization or hot water generation. Other organic materials can be used as feedstocks to enhance biogas production. The Biogas Heat Engine from Quantalux is an energy solution that generates valuable biogas from agricultural waste. Biogas has a large fraction of methane, and with suitable cleaning of the gas, can be used as a drop-in replacement for fossil fuels such as propane and natural gas. Our system includes a novel method for stabilizing biogas production using a thermal energy storage (TES). Renewable thermal sources are coupled to the Heat Engine via thermal storage cache, allowing the system to produce biogas more consistently. In order to show the viability of this technology for smaller farming operations, Quantalux will prototype and demonstrate that a simplified, thermally stable anaerobic digester system, We will show that the smaller farmer can self-generate biogas for use on his/her farm (decreasing energy costs), and that same farmer can also earn additional revenue (from selling enhanced digestate.) We also will show enhanced biogas production via the use of thermally stabilized digestion vessels, and by the addition of different farm-based feedstocks to the base manure feedstock. The Biogas Heat Engine will be marketed directly to small to mid-sized dairy farmers who seek decreased costs and a diversified revenue source. Revenues come from avoided cost of energy, the sale of compost, or from tipping fees from co-digestion materials. The Biogas Heat Engine is a way for the small farmer their energy costs while improving the health management of their farm and of the surrounding ecosystem. | Goals: During the USDA Phase II effort, Quantalux will develop an optimized anaerobic digester solution targeted to the needs of small to mid-sized farms. This solution is called the Biogas Heat Engine, and will generate valuable biogas from existing on-farm organic matter (primarily manure). Anaerobic digester performance will be enhanced by the addition of thermal energy storage (TES) technology (researched in Phase I.) TES allows the digester to be operated cost-effectively at higher temperatures, leading to more rapid and stable biogas production. Additional heat also reduces the number of pathogens in the digested material substantially. In addition to TES, Quantalux will also design and prototype remote process monitoring and will test and evaluate available organic material co-feeds can be added to the system to further enhance the quantity of biogas. A system for cleaning and storing biogas will also be developed. Objectives: This project will take a step-wise approach to developing a Phase II prototype. In the first step, initial Phase I computer models for anaerobic digestion and renewable energy sources (solar thermal and energy scavenging) will be refined. Key process monitors of the digestion process will be evaluated and a method for remote data exchange will be developed. Safe and cost-effective methods for storing and using biogas for farm processes (such as heating and cooling) will be developed. In the next step, a detailed engineering design will be developed for the key modules, including the renewable energy sources and TES module, the remote monitoring module and the biogas cleaning/storing module. In the final step, all system elements will be integrated into a scaled version of the Biogas Heat Engine and performance will be validated. The core anaerobic digester will be augmented with TES technology will assure thermal stability during the biogas generation process. Biogas production will be assessed based on a variety of feedstocks (both single feedstocks and co-feeds). The degree of pathogen reduction will be measured and evaluated for a range of pathogens. An overall objective is to maximize the potential revenue to the farmer (via biogas and pathogen-free byproducts) by implementing a comprehensive management strategy. Expected Outputs: The demonstration of the Biogas Heat Engine will show that a biogas-only, thermally stable anaerobic digester system can be viable on small to mid-sized farms. Several key ancillary technologies will be part of the demonstration, including: a remote monitoring system that simplifies and automates process control in the digester, a simplified scrubbing and gas storage system, and a thermal management system that allows for higher performance at lower cost. We will also show that co-feeding the digester using different organic feedstocks will result in higher biogas production. |
An Integrated BioGas-Solar Dehydration System: Increasing Sustainability through Value-Added Agriculture | 0226170 | Akiona II, William K. | 09/01/2011 | 08/31/2014 | COMPLETE | Waianae | Anaerobic Digester, Biogas, Jatropha Seedcake, Solar Dehydration, Value-Added Agriculture, biogas, jatropha, biodiesel, anaerobic digestion, low-value,, residues, seedcake, glycerin, methane gas, solar dehydration, food, waste, moringa, bioenergy, oilseed | Mandates for biofuels have resulted in the significant increase of biodiesel production in rural communities. Hawaii's Jatropha biodiesel production will produce nearly 650-700 kg of residues, consisting of Jatropha seedcake and fruit hulls for every metric ton of seeds harvested for oil production. In addition, the biodiesel conversion process will produce another 30-50 kg of crude glycerin, as a co-product for every metric ton of oilseed processed. In Hawaii, nearly 270 million gallons of petroleum diesel is consumed annually. As the local production of just one million gallons of Jatropha biodiesel will result in more than 20 metric tons of processed residuals each day. This substantial production of biofuels leaves a tremendous amount of low-value residues needing to be properly disposed of, on an island setting that is environmentally fragile. Thus, the onsite anaerobic digestion (AD) of these organic residues, into a methane gas, will not only generate energy - through the use of a combined heat and power (CHP) micro turbine - but will also resolve the issues of wastes disposal. The system will supply enough power and heat to efficiently operate a biodiesel production facility, as well as an adjacent solar dehydration plant, with all of its surplus power, sold to the utility grid. This integrated biogas-solar dehydration system is a natural progression, as Hawaii lays abundant in solar radiation, throughout the year. The project will build a scalable pilot system producing up to 50kW of electricity. Thermal recovery is integrated through the CHP for drying food and co-products. Design benefits will facilitate rural replication, to where the AD system will utilize a broad range of locally-available low-value residues and waste materials that relies on a simple technology, which can be developed and supported locally, while being designed to minimize operational costs. The plan is to set-up and utilizes an integrated biogas facility that will fully utilize and appropriately capitalize on all the synergies provided by a biogas plant. The system biologically converts organic waste and residues into energy-rich biogas that also provides nutrient-rich digested solids that is utilized as an organic fertilizer. Thus, local food production, processing and preservation are realized benefits from this biogas facility's electrical and thermal generation. Hence, food and energy security can now be achieved for our geographically isolated rural communities. Therefore, commercialization plans will focus on the main Hawaiian Islands, first. And thereafter, pursue the market potential that exists throughout the American Pacific Protectorates of Micronesia and American Samoa. Wherever imports of nutrients, food and energy have outpaced rural production, there is a similar biogas development opportunity that exists. While incentives are substantial for renewable energy projects and realizing the financial benefits of tax credits, environmental credits and loan programs can be complex. Hawaii's generous feed-in-tariff will ultimately provide the needed financial support for smaller projects that cannot benefit from the economies of scale principal. | The goal of the project is to definitively determine the design, construction and operation of a modular anaerobic digestion (AD) facility, or biogas plant, that will utilize Jatropha biodiesel residues that consists of Jatropha seedcake, glycerin and fruit hulls; to include other co-digestion substrates, such as Moringa oleifera, agricultural residues, processed food waste, MSW (municipal solid waste) organic residuals and commercial food-waste materials. The AD system will convert these low-value residues into a renewable energy, in the form of biogas to generate electricity and thermal energy. The system will also produce valued co-products in the form of organic fertilizers. The objectives of this project are to utilize crop production residues, as a feedstock, to rid the farm of its wastes stream accumulation. Thus, we can further process these organic waste materials, into value-added energy products to power our food and fuel processing facilities, while utilizing the resulting effluent nutrients to enhance crop production. An integrated biogas-solar dehydration system will be installed, on the farm, to illustrate the proper utilization of waste materials to produce several lines of value-added products and revenue streams. Therefore, the biogas that is generated by the AD system will be utilized to operate a combined heat and power (CHP) unit to produce electrical power that will efficiently operate a biodiesel production facility and solar dehydration plant - selling its surplus power to the local utility grid. The system will also generate a stream of nutrient-rich materials that can be utilized as an organic fertilizer for use on the farm or bagged for the wholesale market. Thus, the waste stream generated from both the biodiesel production facility and solar dehydration plant, will become the primary throughput feedstock for the AD system; augmented with other co-substrates, that will include the receipt of MSW food- and green-waste materials that also generates an additional revenue stream, through tipping fees. The expected output will be that of a whole-systems model for meeting many of our predictable needs; in decentralized green energy production, job creation, watershed protection, regional food production, agricultural nutrient cycling, reduced greenhouse gas production and carbon sequestration. This project is an innovative concept that will spawn replication elsewhere in Hawaii and the American Pacific. |
Integration of bioproducts and bioenergy production with waste treatment | 0223293 | Hu, B | 10/01/2010 | 10/01/2013 | COMPLETE | MINNEAPOLIS | anaerobic digestion, microbial oil accumulation, nitrogen removal,, carbon dioxide mitigation,, fugal pelletization, microalgae cultivation,, phosphorus removal, | Microalgae oil has been proposed as the second generation source to produce biofuel. Its use is highly recommended in order to integrate microalgae cultivation with wastewater treatment so that nutrients in the waste streams can be the raw material for microalgae growth. Some experts even argue that this might be the only option economically feasible, compared to other methods such as open ponds or photobioreactor systems. Anaerobic digestion (AD) has been widely commercialized to treat agricultural residues for nutrient release as well as for harvesting biogas as an energy source. AD converts organic N and P to ammonia and phosphate while total N and P remain constant. Microalgae cultured on the AD effluent usually provide an ideal combination with the AD to utilize the remaining N and P while biomass/oil can be accumulated via microalgae cultivation. However, this process faces several challenges: 1) it is of extremely low efficiency due to the slow growth of methanogens and autotrophic microalgae. The vulnerable nature of the methanogens makes the AD process constantly unstable, while the rich organic nutrients and high turbidity in the AD effluent actually inhibit microalgae to grow on sun light and CO2. 2) The biogas produced from the system consists over 50% impurities such as CO2 etc, which dramatically increase its application on high valued market. 3) The harvest of microalgae is energy-intensive, which is one of the major factors inhibiting the commercialization of the process. To solve the above mentioned issues, firstly, an integrated Anaerobic Digestion and Oil/Biomass Accumulation (ADOBA) process is proposed to combine the acitogenesis/fermentation stage of the anaerobic digestion (AD) process directly with the oil accumulation via mixotrophic microalgae or fungal cultivation. It is a simplified process, derived from common waste-water treatment processes such as AD or AD followed by microalgae cultivation in stabilization ponds (Fig. 1). Compared to these environmental processes, ADOBA will be more suitable for bio-energy production for the following reasons: 1) ADOBA has the same first acitogenesis step as AD, so ADOBA will provide the same benefits as AD in many aspects, including production of renewable energy, reduction of greenhouse gas (GHG) emissions, and potential pathogen reduction. 2). ADOBA will degrade organics much faster than the AD followed by microalgae culture, because without the rate-limiting methanogenesis step, the acitogenesis step of the AD will only serve as the pre-treatment of waste materials and the organic nutrients such as VFA will stimulate the fast growth rate of heterotrophic microalgae cultivation. Secondly, ADOBA-microalage process is proposed to utilize microalgae for the carbon dioxide capture. With the integration of microalgae cultivation with AD, the biogas can be relatively purified via CO2 assimilation with microalgae. Finally, taking advantage of fungal pelletization and its merit on liquid/solid separation, ADOBA-fungi process is proposed to accumulate oil via pelletized cell culture, so that fat cells can be easily harvested. | Research goals An innovative two step Anaerobic Digestion and Oil/Biomass Accumulation (ADOBA) process (Fig. 1) is proposed to integrate fermentative hydrogen production directly with either mixotrophic/autotrophic microalgae cultivation for oil accumulation (ADOBA-microalgae) or with fungal cultivation (ADOBA-fungi). The first step is the acitogenesis/hydrogen fermentation, where organic materials are degraded to produce H2/biogas and volatile fatty acid (VFA); and then in the second step, the effluent from the fermentation will be processed to culture microalgae or fungi for the oil synthesis, where the nutrients such as VFA, N and P will be utilized. Impurities of the biogas from the first stage, such as CO2, NH3 and H2S, will be able to be assimilated and cleaned via microalgae growth. The proposed ADOBA process will provide a new application of the VFA, N and P from water, an innovative method to remove impurities from biogas and a unique way to separate the cell biomass, all of which will increase the economic feasibility of the biological hydrogen production process. Objectives and expected outputs The project will be focusing on the feasibility study of the proposed process. For the ADOBA-microalage process, our primary focus is to study hydrogen gas purification via microalgae cultivation. Our hypothesis of this research is that carbon dioxide will be totally removed from the biogas without oxygen production, therefore, the biogas can be purified. The whole process will be integrated and optimized for their culture conditions. Our goal of the process is to produce around 2 mole H2 per mole glucose, completely assimilate VFA, N and P by microalgae cultivation, dramatically decrease the microalgae cultivation time, increase the oil content to 40-50%, and purify H2 produced from the system to reach 90%. In addition, for the ADOBA-fungi process, a new concept of pelletized/granulated cell cultivation will be adventured for valuable bioproducts and bioenergy production due to above merits. Application of cell aggregates to oil production depends upon obtaining uniform pellets of a desired size. This is not easily accomplished, since many factors influence pellet formation. Filamentous oleaginous fungi Aspergillus oryzae or Mortierella isabellina will be chosen as a model to test our research hypothesis: the pellet will be formed on these fungal fermentation and the pelletized culture will significantly facilitate the harvest of the cell biomass, and decrease the overall cost of the microbial oil accumulation process. |
Desulfurization of Biogas Derived from Animal Manure | 0218108 | Alptekin, G. | 06/01/2009 | 01/31/2010 | COMPLETE | WHEAT RIDGE | biogas~desulfurization~distributed power~combined heat and power | TDA is developing a cost effective and flexible desulfurization technology to clean-up biogas generated from waste streams fuels that allow its use in highly efficient fuel cell-based combined heat and power systems. Better and efficient use of these under-utilized biowastes could replace major amounts of natural gas to reduce the U.S. dependence on foreign energy resources consumption of hydrocarbon in the U.S. and lead to significant reductions in CO2 emissions, a potent greenhouse gas. | Animal farms generate by-product gases containing billions of Btu energy; this energy is either not used at all or used in old and inefficient processes. Better use of these under-utilized streams could replace significant amounts of natural gas, thereby reducing the U.S. dependence on foreign energy resources and significantly reducing emissions of carbon dioxide (CO2), a potent greenhouse gas. TDA Research Inc., in collaboration with FuelCell Energy Inc., proposes to develop a new, high capacity, expendable sorbent to remove sulfur species from ADG, thereby providing an essentially sulfur-free biogas that meets the cleanliness requirements of DFC power plants. Unlike the combustion engines, the fuel cells operate with very high efficiency even at small scale, offering significant benefits to the distributed CHP systems utilizing bio-waste. |
The Design and Development of an Experimental Anaerobic Digester for Organic Waste | 0217691 | Ososanya, E | 04/16/2009 | 04/16/2012 | COMPLETE | WASHINGTON | alternative fuel, anaerobic digestion, animal waste, bio wastes, biodegradation, biogas, biomass, digester, energy, gas chromatograph, geothermal, hydrolysis, methane gas, organic waste, organic waste, renewable energy, solar, wind | The ever growing demand for energy world-wide can only be met by considering the possible range of energy solutions, and the technology to produce emerging sources of energy, to reduce our dependence on oil - a non renewable fossil fuel. Renewable energy such as solar, wind, geothermal, biomass [1,2,3,4], and alternative fuels are promising clean energy resources of the future, which are environmentally friendly and which sources replenish itself or cannot be exhausted. Biomass energy is derived from waste of various human and natural activities, including, municipal solid waste, manufacturing waste, agricultural crops waste, woodchips, dead trees, leaves, livestock manure, hotels and restaurant wastes, etc., which are abundant anywhere and everywhere, at any time. Any of these sources can be used to fuel biomass energy production with the design of an efficient digester or processing plant to harness the energy from the biological mass. By designing and building a new Anaerobic Digester, a number of possible solutions to alternate energy can be experimented which include digestion of animal waste, organic wastes, and bio wastes. This study also will research the use of alternate fuel for the District of Columbia Taxi Cabs. | This research will build a pilot waste anaerobic digester at the DC Agricultural Experiment Station Research Center in Beltsville, Maryland for the production of biomass and demonstrates that using the resources that are easily available makes the production of energy efficient and reliable. The energy producing potential of the different types of waste products will be studied through continuous monitoring of the digestion biochemical processes, operating parameters, the energy content, and the analysis of the biogas products. A Fuzzy logic Controller of the Anaerobic Digester System will be designed in parallel with the physical digester to enable us to model mathematically or simulate certain aspects of the digester processes for increased efficiency and process stability. This study will also research the environmental impact of the use of alternate fuels by performing an engineering analysis of energy consumption by Taxi Cabs in the District of Columbia. The goal will be to evaluate the differential environmental impacts of various types of fuels used by the taxi cabs and to answer two questions: What are the advantages of having an alternate fuel for District taxi cabs Are there any potential environmental benefits through the use of biofuels by DC taxi cabs The objectives of this research are: (i) To design and engineer an efficient, reliable, and low-cost anaerobic digester for waste processing; (ii) To analyze the potential of biogas production from anaerobic digestion of the organic waste of the city of Washington DC; and (iii) To maximize methane gas production. The overall objectives of environmental impact analysis will include: (a) Collect data and catalog the number of taxi cabs in the District and their fuel consumption patterns, number of fuel service stations, and types of fuel; (b) Conduct statistical analysis of collected data; (c) Relate urban air quality to different types of fuel consumption; (d)Evaluate the impact of alternative fuel on the environment; (e) Conduct preliminary cost-benefit analysis of using biofuel; (f) Educate the stake holders and students about the use of alternative fuels; and (g) Support state and federal agencies in providing relevant information. |
The Science and Engineering for a Biobased Industry and Economy | 0216889 | Capareda, Sergio | 10/01/2008 | 09/30/2013 | COMPLETE | COLLEGE STATION | anaerobic digestion, biodiesel, biogas, biomass energy, ethanol, gasification | We are investigating several biological and theremochemical processes for conversion of biomass to energy. In one project, we are evaluating thermochemical gasification combined with thermophilic anaerobic digestion for conversion of dairy manure for on-site energy production. In addition to producing energy, the mass and volume of wastes from the combined system will be significantly reduced which will allow more economical export of phosphorus and other nutrients from the watershed in which the dairy is located. This will help the overall dairy operation become more sustainable. We are investigating methods to increase biogas production from anaerobic digestion, for example, by incorporating the glycerol byproduct from biodiesel production in the feedstock to the digester. We are investigating conversion of different types of sorghum to ethanol, and we are developing alternative methods for production of biodiesel from oils and fats. | Not applicable |
Selective Pyrolysis of Lignocellulosic Materials and Novel Refining Concepts to Produce Second Generation Bio-fuels, Bio-chemicals and Engineered Bio-chars. | 0214389 | Garcia-Perez, M | 01/01/2013 | 12/31/2017 | COMPLETE | PULLMAN | bio-char, bio-oil, bio-refining, pyrolysis, woody biomass | This research effort will be devoted to advance the science and technology required to implement a new model of a biomass economy, formed by distributed pyrolysis units, rural refineries and centralized refineries. The pyrolysis units located near biomass resources will produce crude bio-oil and bio-char. The crude bio-oil is then transported to rural refineries to be converted into stabilized bio-oil, fuels and chemicals (ethanol, lipids, biogas, bio-plastic). Finally, centralized refineries are envisioned to convert stabilized bio-oils into drop-in transportation fuels. The pyrolysis units could have a function in this new biomass economy similar to the role of petroleum wells in our current petroleum based economy. To implement this concept, additional research in several areas is necessary to:<br> (1) conduct fundamental studies of thermo-chemical reactions to better understand the relationship between biomass composition and its thermal degradation mechanisms to enhance the production of levoglucosan<br> (2) develop and tests new types of selective fast pyrolysis reactors and their mathematical modeling,<br> (3) develop new analytical methods to characterize the chemical composition of bio-oils,<br> (4) develop bio-chars for environmental services<br> (5) evaluate several new concepts for rural bio-oil refineries,<br> (6) study the feasibility of processing of stabilized bio-oil fractions in existing petroleum refineries, and<br> (7) develop and test second generation bio-fuels and chemicals from bio-oils.<p> Our project targets the conversion of at least 30 mass % of the initial biomass into transportation fuels and high value chemicals. The production of engineered bio-chars for environmental services will contribute to sequester carbon, reduce the content of phosphorous and nitrogen from liquid effluents of anaerobic digesters and enhance soil fertility. | a) Conduct fundamental studies on the kinetics of biomass thermo-chemical reactions to better understand the relationship between the structure of biomass constituents (cellulose, hemicelluloses and lignin) and their degradation mechanisms.<br> b) Develop and test new types of pyrolysis reactors with mathematical modeling of proposed concepts.<br> c) Develop new analytical methods to characterize the chemical composition of bio-oils.<br> d) Develop and test engineered bio-chars for environmental services.<br> e) Test new bio-oil based refinery concepts at laboratory scale.<br> f) Develop of new transportation fuels and chemicals from bio-oil fractions. |