Saved Search "BOD"

Search these terms...
Search in these fields...
Show these fields in the results...
View results as:   Document   Tabular (* always hidden in tabular view)
↔ Hide Filters  Filter Chooser
↔ Show Filters 
 Project Title Accession Number Sponsoring Agency Project Start Date Project End Date Project Status Recipient City Name Non-Technical Summary Objectives
Equipping Wayne County High School students for careers in Ohio`s bioenergy and water/wastewater industries1010593National Institute of Food and Agriculture09/01/201608/31/2018COMPLETEColumbusOhio's bioenergy/bioprocessing industry has consistently grown over the past decade, eliciting significant increase in the demand for technical skills in bioconversion technologies. The proposed project will provide training in the use of core analytical and operational tools and procedures including assay-based wastewater analysis and digestion, high performance liquid chromatography (HPLC), Gas Chromatography (GC), Spectrophotometer, fermentation (5 L bioreactor), protein and DNA gel extraction and electrophoreses, lignocellulosic biomass pre-treatment and hydrolysis to high school students (grades 10 - 12). Ohio is a predominantly agro-based economy with a robust food processing sector that collectively generate millions of tons of organic residues annually, in addition to municipal solid waste and bio-solids. As research efforts towards biofuel production from renewable resources break new grounds, small and medium-scale companies in Ohio are vigorously pursuing bioconversion of lignocellulose-derived sugars to bioethanol and bio-butanol, while biogas production has grown significantly in the State. Additionally, water resource recovery through wastewater treatment has never been more critical in light of growing human population. These factors have spawned a massive need for staff with technical expertise in the hydrolysis of agro-derived biomass feedstock, wastewater treatment, and biofuel research. High school students are largely unaware of career opportunities that abound in Ohio in the areas of biofuels and wastewater treatment. According to Renewable Energy of America, Ohio's renewable energy sector has created 126,855 jobs, the sixth highest in the country. The proposed project will serve as medium for introducing high school students in Wayne County, Ohio to career opportunities in biofuel-related research and production, agricultural biomass feedstock hydrolysis, fermentation of food processing wastes, biogas production and wastewater treatment. High school students from Wooster High School and Northwestern High School will receive a two-month training in the laboratory over the summer (June and July) at the Agricultural Technical Institute (ATI) and the Ohio Agricultural Research and Development Center (OARDC), both at the Wooster campus of The Ohio State University. This training will also allow high school students to interact with students on the two-year Associate of Science Degree program in Renewable Energy at ATI, as well as researchers involved in different aspects of bioenergy research at OARDC. A career workshop involving industry partners from Quasar Energy, Cleveland, Ohio will be conducted at the end of the training program. Exposure to the above listed techniques employed in the drive for engineering robust biofuel-producing microorganisms, biomass hydrolysis and wastewater treatment will likely steer high school participants to pursue careers in the bioprocessing and wastewater treatment sectors. This will ensure the supply of much needed operators, technicians and researches in Ohio's growing bioenergy industry and in wastewater treatment.The central goal of the project is to spark an interest in job opportunities in Ohio's bioenergy and water/wastewater industries amongst high school students in Wayne County through experiential training in core industry-relevant skills.The specific objectives are;To provide hands-on training in the operation of HPLC and GC, Fermentation Technology, DNA and protein gel electrophoresis, Genomic DNA and protein isolation, use of spectrophotometer, agricultural biomass hydrolysis, anaerobic digestion of municipal solid waste and wastewater to high school students.To expose high school students in Wayne County, Ohio to career opportunities in the biofuel/bioprocessing and water/wastewater industries through training and interactions with industry experts from Quasar Energy Group and other local Waste Management Engineering firms and with Renewable Energy students of Ohio State ATI.To provide a platform for professional interaction and exchange of ideas between science teachers (agricultural and environmental sciences, chemistry and physics) at Wooster and Northwestern High Schools with their counterparts from Ohio State ATI and OARDC - Ohio Agricultural Research and Development Center.To encourage stronger industry-academia relations between Quasar Energy Group (other local Waste Management Engineering firms) and, Ohio State ATI and OARDC, towards fashioning problem-solving curricula that prepare students for the workplace.
Algae for conversion of manure nutrients to animal feed: Evaluation of advanced nutritional value, toxicity, and zoonotic pathogens1000956National Institute of Food and Agriculture09/01/201308/31/2017COMPLETEPomonaRationale The need to control manure-derived nutrient pollution is straining the confined animal production industry. California is the top milk producing state and has some of the strictest nutrient regulations. But in the San Joaquin Valley, many dairies do not have affordable access to more land for manure application. A highly productive crop is needed that will convert manure nitrogen (N) and phosphate (P) into feed but in smaller land areas than crops such as corn. Algae are a candidate feed with annual yields typically 7-13 times greater than soy or corn. Beyond 40-50% protein, algae also contain fatty acids, amino acids, pigments, and vitamins that are valuable in animal feeds, especially for adding value to milk. Advances in molecular biology allow us to gather needed information on the risks and benefits of algae-based animal feeds. Overall goal Benefit animal agriculture and the environment by introducing microalgae as a fast-growing livestock feed crop. Aim 1 Cultivate algae in dairy freestall barn flush water, treating this wastewater, while producing algae feedstock at a high annual rate, at least 10-times greater than corn. Algae will be cultivated in 30-cm deep raceway ponds at the 300-head Cal Poly campus dairy farm where extensive manure management research already occurs under USDA and USEPA sponsorship. Aim 2 Produce algae with favorable nutritional characteristics (high digestibility, valuable fatty and amino acid profiles, balanced protein and carbohydrate concentration, etc.) by adjusting the treated-water recycling into the ponds to optimize the N concentration in the growth medium. Aim 3 Test pathogen survival in algae feeds prepared by pasteurization and/or drying and heating. A trend in municipal wastewater treatment is pasteurization of treated effluent using waste heat from natural gas electrical generator. Large dairies with digesters will have waste heat available for pasteurization and drying. High-protein algae will be pelletized with high carbohydrate feeds to create a balanced feed. The heat of pelletization also contributes to pasteurization. Cal Poly has a research feed mill for producing such blended feeds. Aim 4 Monitor contamination by cyanobacteria and any cyanobacterial toxins. Approach Removal of N, P, and other constituents will be optimized in influent and effluent of identical ponds. Algal biomass (harvested by bioflocculation+settling) will be analyzed for N, P, protein, carbohydrates, and profiles of fatty and amino acids. Pathogen and algal communities extant in raw and feed-processed algal biomass will be analyzed using metagenomics and pyrosequencing. Potential toxicity of algal biomass will be studied using toxicity evaluation of cell-free extracts on cultured mammalian cells. A TC 20 Cell counter (BioRad Laboratories) will be used to monitor toxicity events on treated cells using trypan blue staining. Cytotoxic positive samples will be tested for both presence and concentration of known cyanobacterial toxins. The researchers have decades' experience in algae production, wastewater treatment, and food safety. Expected outcomes Starting with dairy, the project will lead the way towards an algae feed industry based on advanced nutritional features to enhance agricultural products (e.g., milk protein, poultry pigment) while assisting farmers to meet manure management challenges. We will address topics rarely covered in the algae field: potential toxicity and zoonotic pathogens. Our approach is unique in that it integrates and addresses a triad of issues, namely, food safety issues along with algae production techniques and waste management. Project Goals 1. Generate experimental field data and calibrate optimization models. For treatment, expected removals are 85-95% biochemical oxygen demand and soluble Nitrogen (N) and 40-80% solublePhosphate (P) removal, depending on culturing technique and season. 2. Maximize the nutritional value of produced algae for animal feed. The cultures will be optimized to produce biomass at a high rate while also having the highest value composition for feed (in terms of lipids, digestibility, essential fatty and amino acid profiles, including balanced protein and carbohydrate concentrations). 3. Optimize pathogen inactivation methods. Pathogens will die-off in the ponds and during disinfection processing of the harvested biomass. Inactivation rates for representative pathogen indicators will be determined under various algae cultivation conditions and during trials with several biomass disinfection techniques. The optimal combination of pond conditions (e.g., high pH) and biomass processing (e.g., pasteurization) will be determined to achieve needed log inactivation of pathogens, which is typically 1- >4 log10 reduction (Sobsey et al., Available Online). 4. Quantify and control any cyanobacterial toxins. qPCR assays described by Al-Tarineh et al. (2012 a and b) will be used and optimized to reliably determine the copy number of cyanotoxin biosynthesis genes, as well as an internal cyanobacteria 16S rDNA control, in a single reaction. The latter detects for presence of cyanobacteria. If toxins are detected, measures will be taken to control invasion of the ponds by cyanotoxin-producing cyanobacteria strains. Overall Goal Benefit agriculture and the environment by introducing microalgae, a fast-growing livestock feed crop.