Thermal Regulation with Salt Hydrates for Biodigester Isothermality | 1025901 | Charles, Josh | 07/01/2021 | 07/31/2022 | COMPLETE | Lancaster | To solve the digester thermal control problem, Advanced Cooling Technologies (ACT) is developing an energy storage material that can be wrapped around a digester. This material will absorb thermal energy from the sun during the day and release it to the digestate at night. The energy storage materials are very inexpensive but there are some challenges related to their long-term use. Fortunately, the project team has successfully solved these issues during past projects. Laboratory testing will be used to demonstrate the life of the developed materials followed by testing on a small biodigester for several months. By the end of the project, ACT hopes to demonstrate a low-cost, small-scale, biodigester which will allow many more small farms to take advantage of this renewable energy source. This will accelerate the transition to renewable energy sources, helping to minimize the ecological damage created by our current energy generation mix.? | The goal of this Phase 1 project is to increase the biogas production potential of small-scale anaerobic digesters (AD) without significant increases in system cost and/or complexity. If successful, this technology has the potential to make AD technology economically viable for small farms, increasing utilization of this renewable energy source. The technical goal of this project is to develop and successfully test a working small-scale anaerobic digester (AD) with passive thermal control across multiple seasons - especially the winter. AD bacteria require a stable, relatively warm digestate temperature to maximize their biogas generation rate. This is a challenge in small ADs where rapid ambient temperature changes and cold wintertime temperatures can easily deactivate the efficacy of the bacteria. This project will fix this problem by adding a low-cost phase change material (PCM) around the AD, which will act as a thermal buffer to rapid temperature changes. The PCM also serves as a thermal energy store that can absorb solar thermal energy during the day and release it into the AD throughout the night, forming a passive solar heating system that can maintain the digestate temperature throughout the winter. The development and performance demonstration of this passively heated and temperature-controlled AD is the primary goal of the project.The following objectives present a pathway to achieving the Phase 1 goal:Selection and thermal reliability testing of a hydrated salt PCM. A PCM that demonstrates a pathway to 25+ year performance through accelerated freeze/thaw tests is targeted. The PCM has a material cost target of ~$0.1/kg.Model, design, and fabricate a sub-scale proof-of-concept AD utilizing the selected PCM for passive thermal control. A system design that can be easily fabricated from inexpensive and widely available components is targeted.Successfully test the sub-scale AD with PCM thermal control and simulated solar heating over several months during the coldest seasons of the year. A daily digestate temperature variation of no more than ±2°C is targeted during passive solar heating of the digestor with integrated PCM thermal storage.Prepare an economic assessment of the proposed AD with passive solar heating and PCM thermal control. If a pathway towards the LCOG goal of $0.30/m3 is not realized in the Phase I prototype system, variations to the current design will be proposed for additional cost reductions to be examined experimentally during Phase II. |
Development of bio-platforms for efficient conversion of lignocellulosic biomass and greenhouse gas to fuels and chemicals | 1020980 | Ezeji, Thaddeus | 10/15/2019 | 09/30/2024 | COMPLETE | COLUMBUS | Numerous processes have been developed or are currently in development for the bioconversion of plant carbohydrates (sugars), especially lignocellulosic biomass (LB), to fuels and chemicals. Due to the diverse nature of LB, this feedstock has yet to be economically converted into fuels and commodity chemicals. The proposed research would focus on the biosynthesis of 2,3-butanediol (2,3-BD), hydrogen (H2), acetone, ethanol and butanol using compatible bacteria and waste products - anaerobic digestion effluents, biodiesel-derived glycerol and LB. Butanol and 2,3-BD yields from LB (e.g. glucose, xylose, starch) conversion is not optimal because a significant amount of the biomass is converted by these microorganisms into un-captured CO2 and H2. We, therefore, also propose to develop a viable strategy to capture released CO2 and H2 and convert CO2 to acetone, ethanol and butanol; and improve the usable energy yield from LB. In parallel, the generated CO2 may be used in the waste and water treatment plants as part of wastes treatment - biofuel production integrated process. Meanwhile, while H2 is an excellent fuel with no carbon footprint upon combustion, 2,3-BD can be used as a precursor in the manufacture of a range of chemical products such as perfumes, printing inks, moistening and softening agents, fumigants, explosives, plasticizers, and octane isomers. The 2,3-BD is also an essential feedstock chemical for the synthesis of 1,3-butadiene (1,3-BD), the monomer of synthetic rubber, currently produced by cracking petroleum. The majority of hyper-2,3-BD producing microorganisms are pathogens, and this may have considerable effects on why most ongoing research in this area is being conducted overseas (probably due to regulatory and liability issues in the US). The bacteria we proposed to use for the production of 2,3-BD is non-pathogenic. The downstream products of 2,3-BD is estimated to have a global market for around 32 million tons annually, valued at approximately $43 billion (US) in revenue. The other product of interest, butanol, currently manufactured with petroleum feedstocks, is also an important chemical with many applications in the production of solvents, plasticizers, butylamines, amino resins, butyl acetates, etc. Global butanol consumption is expected to reach 13 million tons by 2024. The current market value of butanol is about $6.4 billion and its downstream products is valued at well over $40 billion. With increasing efforts to develop LB-based biorefineries to produce fuels and chemicals on a commercial-scale, residual wastes such as fermentation effluents are expected to markedly increase. Consequently, the relatively large nitrogen (N) concentrations of fermentation wastes may pose a serious hazard to human health and biodiversity because wastewater disposal may contribute significantly to environmental N concentrations. Anaerobic digestion (AD) is an attractive strategy for reducing the risks associated with large amounts of carbon and N in water bodies. Treatment (digestion) of protein-rich wastes, however, leads to the production of ammonia, which frequently compromises or abolishes the bio-digester reactions (stemming from multifaceted ammonia toxicity to the microorganisms involved in AD); a major economic challenge for the waste treatment industry. Our goal in this project, therefore, is to develop a viable strategy for generating butanol, 2,3-BD and H2 from agro-based wastes - LB, biodiesel-derived glycerol, and anaerobic digestion effluents along with development of effective N removal from solid and liquid wastes. This task has some challenges because biosynthesis reactions that result in the production of valuable fuels and chemicals do not generate compounds in amounts that are economically feasible for large-scale production because most fermentation processes are product limiting due to feedback inhibition and product toxicity to the fermentation microorganisms. We plan to develop or retrofit existing real-time product recovery technologies and adapt them for real-recovery of 2,3-BD, H2, acetone, ethanol and butanol during fermentation. Overall, we expect to develop platforms, which have the potential of becoming a part of the rubric of "green chemical" approaches that allow for conversion of LB and glycerol to valuable fuels and chemicals such as ethanol, acetone, H2, butanol and 2,3-BD. | Numerous processes have been developed or are currently in development for the bioconversion of plant carbohydrates (sugars), especially lignocellulosic biomass (LB), to fuels and chemicals. Due to the complex heterogeneous nature of LB, this feedstock has yet to be economically converted into fuels and commodity chemicals. The proposed research would focus on the biosynthesis of 2,3-butanediol (2,3-BD), hydrogen (H2) and butanol through microbial-assisted interdependent utilization of two different waste products - biodiesel-derived glycerol and LB. Butanol and 2,3-BD yields from LB (e.g. glucose, xylose, starch) conversion is not optimal because a significant amount of the biomass is converted by these microorganisms into un-captured CO2 and H2. We, therefore, also propose to develop a viable strategy to capture released CO2 and H2 and convert CO2 to fuels and chemicals; and improve the usable energy yield from LB. The overarchinggoal of the proposed study is to use synthetic biology and functional genomics techniques to potentiate C. beijerinckii (Cb), C. carboxidivorans (Cc), and P. polymyxa (Pp) with mechanisms to counter the adverse consequences of LDMICs and enhance fermentation of LBH to butanol, 2,3-BD and H2. Additionally, we will incorporate, as needed, Saccharomyces cerevisiae and Pseudomonas putida to our plan to facilitate valorization of wastewaters to fuels and chemicals. Our overall objectives are:?1) increase NADPH generation by enhancing glycerol metabolism by overexpression of glycerol dehydrogenase (GDH) and dihydroxyacetone kinase (DHAK) genes2) develop LDMIC tolerant Cb and Cc strains with an improved capacity to convert LBH (switchgrass, Miscanthus, and corn stover) and CO2 to H2, acetone and butanol, and improve the yield and economics of production of these compounds 3) elucidate a process of degeneration of Pp and increase 2,3-BD production from LBH4) develop a bioprocess that converts industrial and agricultural wastewaters to fuels and chemicals5) develop an efficient bioreactor system for butanol fermentation and in situ real-time product recovery |
A closed-loop dairy system by an integrated anaerobic digestion and pyrolysis process for food-energy-water nexus | 1018814 | Kan, Eun Sung | 04/05/2019 | 04/05/2024 | COMPLETE | COLLEGE STATION | Dairy farms, like other animal farms, have multiple threats against sustainable operation such as significant pollution in water, air and soil, food safety, water shortage and energy supply. Current management of dairy manure such as land application often causes significant water, air and soil pollution. High levels of nutrients and various antibiotics released into environment lead to algal blooms, eutrophication, nitrate accumulation and increase of antibiotic resistant bacteria. Land application of manure also drastically contributes to emission of odor and greenhouse gases from manure while causing soil acidity/infertility, which would decrease agricultural productivity. Composting can produce biofertilizers via microbial actions using dairy manure; however, it also causes drastic loss of ammonia and development of odors during the composting process. Anaerobic digestion has been suggested to resolve manure disposal, energy recovery and greenhouse gas control. Despite several advantages, it was found that anaerobic digestion suffered fluctuating performance, difficult operation, low yield of biogas, and the need to dispose of undigested sludge after digestion. Recently thermal disposal of manure such as pyrolysis and gasification has been studied to convert manure to bio-oil, syngas and biochar. However, thermal disposal of manure has revealed high energy consumption with high moisture of wet manure and low yields of energy (bio-oil and syngas).Proposed concept: A closed-loop dairy system by an integrated anaerobic digestion and pyrolysis processTo improve current anaerobic digestion and pyrolysis, an integrated pyrolysis and biochar process has been suggested to be a highly promising option for manure and wastewater treatment at dairy farms. However, so far there have been few systematic approaches to develop the pyrolysis-biochar process for dairy manure disposal, wastewater treatment, nutrient recovery and soil amendment. In this project I will address these critical issues with systematic investigation of an integrated anaerobic digestion and pyrolysis to overcome dairy farm-associated sustainable problems. The proposed dairy system combines anaerobic digestion (AD) and pyrolysis (PY) for intensifying food-energy-water at dairies. Flushed manure goes to an anaerobic digester as a bioreactor, where manure is converted to biogas, liquid and solid digestates. A PY unit integrated with AD convert mixture of AD digestate and waste hays to biochar and syngas. Syngas from PY and biogas from AD are fed to a combined heat and power generator (CHP) to make energy for supporting AD and PY. The total amount of electricity and heat generation from CHP is used to support energy consumption of pyrolysis and anaerobic digestion. The excessive electricity can be sold to bring an extra revenue. Biochars are added to AD for enhancing biogas production, process stability and manure disposal. Biochar are also amended with soil for increasing productivity of crops, vegetables, and forage grasses as well as soil fertility. The crops and forage grasses are recycled to feeding cows, while organic vegetables are sold for additional profits. Some biochar is made into activated carbon via steam activation process, which removes emerging contaminants such as antibiotics from AD liquid digestate. Some proportion of treated liquid digestate is irrigated to crops, vegetables and forage grasses while the rest is recycled for flushing manure. Excessive activated carbon can be also sold as water filtering media for additional profits. Therefore, the integrated AD and PY can overcome current limitations of AD and PY including treatment of enormous amounts of AD digestate, high energy consumption and decontamination of AD liquid digestate. | The overall goal of this project is to enhance agricultural and environmental sustainability at dairy systems by an integrated anaerobic digestion and pyrolysis process.The specific objectives to achieve the goal of this project include:Objective 1: Develop a novel pyrolysis for production of energy, biochar, and activated biochar from anaerobic solid digestate of dairy manure mixed with waste hays at dairy systems.Objective 2: Develop an enhanced anaerobic digestion of dairy wastes with addition of biochar for increasing energy-water-food production.Objective 3: Develop treatment and reuse of anaerobic liquid digestate by biochar-derived activated carbon. |
Closing The Si Cycle In Rice Agroecosystems To Sustainably Control As And Cd Uptake By Rice Grown Under Alternate Wetting And Drying (Awd) | 1015323 | Seyfferth, Angelia | 03/15/2018 | 03/14/2023 | COMPLETE | Newark | Rice is a staple food for half of the global population and is an important U.S. commodity; therefore, improving both rice quantity (yield), quality (i.e., low amounts of toxic metal(loid)s) and environmental footprint is of global importance. The overarching aim of this proposal is to decrease toxic arsenic (As) concentration in rice grain and improve yield without increasing toxic cadmium (Cd) concentration in rice grain or greenhouse gas (GHG) emissions. This will be achieved through soil Si management of paddy rice grown under the alternate wetting and drying (AWD) irrigation practice.Our team will assess the combined approach of AWD and soil Si management to control As and Cd uptake, reduce GHG emissions, and limit water use in the cultivation of paddy rice through a combined laboratory and field approach. We will use a systems approach to observing rice production under different growth conditions - including irrigation regime and Si-rich rice residue soil amendments- to enable a comprehensive view of these interactions. We will also examine rice grown at different spatial scales - outdoor mesocosm and production-field scales - to test how treatment effects found in a controlled laboratory environment interact in real-world management regimes under naturally occurring variations of soil, weather, and management. This proposal will discover a new strategy to sustainably grow rice while limiting water use, uptake of toxic metal(loid)s and GHG emissions. | Our team will assess the combined approach of AWD and soil Si management to control As and Cd uptake, reduce GHG emissions, and limit water use in the cultivation of paddy rice through a combined laboratory and field approach. We will use a systems approach to observing rice production under different growth conditions - including irrigation regime and Si-rich rice residue soil amendments- to enable a comprehensive view of these interactions. We will also examine rice grown at different spatial scales - outdoor mesocosm and production-field scales - to test how treatment effects found in a controlled laboratory environment interact in real-world management regimes under naturally occurring variations of soil, weather, and management. We will first grow rice to maturity in rice paddy mesocosms amended with Si-rich residues (rice straw, rice husk, and charred straw and charred husk) and 1) quantify rice yield and Si, As, Cd accumulation, localization, and speciation in rice grain; 2) monitor spatial and temporal variations in pore water chemistry, including As species, dissolved GHGs (N2O, CH4, and CO2) as well as emissions of GHGs from rice paddies; and 3) measure expression of arsenite S-adenosylmethionine methyltransferase (ArsM), which is indicative of microbial arsenite detoxification, in amended paddy soils. Next, we will trial the best-performing amendment in factorial field-scale trials with Si amendment and irrigation management as variables. Field trials will include monitoring of pore water dissolved As and GHG dynamics, GHG and As volatilization fluxes, and elemental accumulation and speciation in rice grain. |
Nitrite Ammonification in Manures and Soils Under Adaptive Management for Climate Change | 1009145 | Bruns, Maryann | 04/01/2016 | 03/31/2020 | COMPLETE | University Park | Agriculture accounts for 75-80% of anthropogenic nitrous oxide (N2O) emissions in the U.S. Denitrification in fertilized soils and during animal waste handling results in about 60% and 30% of N2O emissions, respectively. This proposal aims to gain knowledge of how soils and manures can be managed to counteract denitrification and to promote a bacterial process known as nitrite ammonification, the end product of which (ammonium) is not lost directly to the atmosphere. We hypothesize that nitrite ammonification occurs to a significant extent in soils managed using no-till practices and labile carbon amendments, either with animal or green manures. Particularly in combination, these practices increase labile soil carbon content and improve soil water-holding capacity, and they are being adopted by farmers in response to more variable and extreme weather resulting from climate change. Innovative soil management, such as manure injection currently evaluated at Penn State's Sustainable Dairy Cropping Systems project, minimizes disturbance during carbon enrichment and needs to be assessed for its effect on denitrification and nitrite ammonification. Moreover, manure storage and handling practices favoring nitrite ammonification over denitrification need to be identified. Specific objectives of this proposal are to 1) measure bacterial groups and labile carbon substrates in manures from dairies of varying size and manure handling systems; 2) measure GHGs and temporal and spatial changes in nitrite ammonification and denitrification in no-till soils of the Sustainable Dairy Cropping Systems project; 3) conduct soil mesocosm studies to determine relationships between substrates, physicochemical conditions, microbial processes, and GHGs to understand conditions favoring nitrite ammonification over denitrification. | The overarching goal of this project is identify manure and soil management practices that help reduce agriculture's contributions to greenhouse gases (GHGs), particularly nitrous oxide (N2O). Currently agriculture contributes 75-80% of anthropogenic N2O emissions in the United States, with fertilized soils and livestock wastes contributing about 60% and 30% of that total. Efforts to reduce these emissions have high priority because the global warming potential of N2O is nearly 300 times that of CO2. Incomplete denitrification is considered to be the major source of N2O in agriculture, with nitrification a secondary contributor. No-till soils are particularly susceptible to denitrification losses of N2O when soils are recently fertilized and wet. It is paradoxical, therefore, that higher N2O emissions occur when farmers apply conservation tillage practices intended to make soils more resilient to climate change. Denitrification, however, is not the only nitrate (NO3-) conversion pathway that bacteria carry out under O2-depleted conditions. Some bacteria can instead reduce NO3- and/or nitrite (NO2-) to ammonium (NH4+) without N2O as an intermediate. This process, known either as nitrate/nitrite ammonification (NA) or dissimilatory nitrate reduction to ammonium (DNRA), results in an end product (NH4+) that is retained in the soil rather than lost to the atmosphere. Recent advances in molecular detection of nitrate/nitrite-ammonifying (NA) bacteria indicate their surprisingly high genetic diversity and widespread distribution in the environment. Indeed, many enteric bacteria present in animal wastes (e.g., E. coli) are known to be nitrate/nitrite ammonifiers. In this proposal, we aim to address the question, "Can we use NA to avoid the tradeoff of higher N2O emissions from systems employing soil, water, and nutrient conservation practices?"The main goals of this proposal are to 1) obtain basic knowledge about NA bacteria in manures and soils; 2) identify conditions and management practices affecting NA activity in C-enriched soils; and 3) evaluate net global warming potentials of NA-conducive practices. Specifically, this proposal focuses on NA bacterial groups and their responses to chemical status and physical conditions in dairy wastes and field soils at Pennsylvania State University's Sustainable Dairy Cropping System project (SDCS) funded by NESARE (Northeast Sustainable Agricultural Research and Education) program. The SDCS is one of the greenhouse gas (GHG) monitoring sites participating in the USDA-CAP network, Climate Change Mitigation and Adaptation in Dairy Production Systems in the Great Lakes Region (WI, NY, and PA). At the SDCS, no-till practices are combined with low-disturbance carbon (C) amendment of soils using dairy wastes and/or perennials or cover crops, which are important sources of organic matter in climate-adaptive farming.Specific objectives of this project are to:1) Characterize NA bacteria in manures from diverse dairies. Measure the abundance and characterize groups of nitrate/nitrite ammonifiers and denitrifiers in manures from the SDCS and other private dairies which employ varied manure storage and handling procedures. Assess relationships between bacterial groups and manure composition, pH, redox, age, and storage practices. Determine conditions enabling NA activity in laboratory mesocosms using varying combinations of electron donors and electron acceptors and measure relative activities of nitrate-nitrite ammonifiers and denitrifiers.2) Measure soil properties and gas fluxes (N2O, CH4, NH3, CO2) in SDSC. Carry out spatially and temporally intensive sampling of soil properties (including pH and redox) and GHG fluxes from SDSC plots (comparing broadcast- and injected manure, with and without cover crops), and link these measurements to expression levels of bacterial genes for key N transformations in relation to surface residues and manure injection sites.3) Assess NA and denitrification activities in soil mesocosms under varied conditions. Conduct controlled studies with diverse soils amended with manures, stable-isotope labeled nitrate, and specific organic substrates in laboratory mesocosms. These experiments will be used to evaluate application methods and determine relationships between gas fluxes, C additions, and incubation conditions. |
Algae for conversion of manure nutrients to animal feed: Evaluation of advanced nutritional value, toxicity, and zoonotic pathogens | 1000956 | Murinda, Shelton | 09/01/2013 | 08/31/2017 | COMPLETE | Pomona | Rationale The need to control manure-derived nutrient pollution is straining the confined animal production industry. California is the top milk producing state and has some of the strictest nutrient regulations. But in the San Joaquin Valley, many dairies do not have affordable access to more land for manure application. A highly productive crop is needed that will convert manure nitrogen (N) and phosphate (P) into feed but in smaller land areas than crops such as corn. Algae are a candidate feed with annual yields typically 7-13 times greater than soy or corn. Beyond 40-50% protein, algae also contain fatty acids, amino acids, pigments, and vitamins that are valuable in animal feeds, especially for adding value to milk. Advances in molecular biology allow us to gather needed information on the risks and benefits of algae-based animal feeds. Overall goal Benefit animal agriculture and the environment by introducing microalgae as a fast-growing livestock feed crop. Aim 1 Cultivate algae in dairy freestall barn flush water, treating this wastewater, while producing algae feedstock at a high annual rate, at least 10-times greater than corn. Algae will be cultivated in 30-cm deep raceway ponds at the 300-head Cal Poly campus dairy farm where extensive manure management research already occurs under USDA and USEPA sponsorship. Aim 2 Produce algae with favorable nutritional characteristics (high digestibility, valuable fatty and amino acid profiles, balanced protein and carbohydrate concentration, etc.) by adjusting the treated-water recycling into the ponds to optimize the N concentration in the growth medium. Aim 3 Test pathogen survival in algae feeds prepared by pasteurization and/or drying and heating. A trend in municipal wastewater treatment is pasteurization of treated effluent using waste heat from natural gas electrical generator. Large dairies with digesters will have waste heat available for pasteurization and drying. High-protein algae will be pelletized with high carbohydrate feeds to create a balanced feed. The heat of pelletization also contributes to pasteurization. Cal Poly has a research feed mill for producing such blended feeds. Aim 4 Monitor contamination by cyanobacteria and any cyanobacterial toxins. Approach Removal of N, P, and other constituents will be optimized in influent and effluent of identical ponds. Algal biomass (harvested by bioflocculation+settling) will be analyzed for N, P, protein, carbohydrates, and profiles of fatty and amino acids. Pathogen and algal communities extant in raw and feed-processed algal biomass will be analyzed using metagenomics and pyrosequencing. Potential toxicity of algal biomass will be studied using toxicity evaluation of cell-free extracts on cultured mammalian cells. A TC 20 Cell counter (BioRad Laboratories) will be used to monitor toxicity events on treated cells using trypan blue staining. Cytotoxic positive samples will be tested for both presence and concentration of known cyanobacterial toxins. The researchers have decades' experience in algae production, wastewater treatment, and food safety. Expected outcomes Starting with dairy, the project will lead the way towards an algae feed industry based on advanced nutritional features to enhance agricultural products (e.g., milk protein, poultry pigment) while assisting farmers to meet manure management challenges. We will address topics rarely covered in the algae field: potential toxicity and zoonotic pathogens. Our approach is unique in that it integrates and addresses a triad of issues, namely, food safety issues along with algae production techniques and waste management. | Project Goals 1. Generate experimental field data and calibrate optimization models. For treatment, expected removals are 85-95% biochemical oxygen demand and soluble Nitrogen (N) and 40-80% solublePhosphate (P) removal, depending on culturing technique and season. 2. Maximize the nutritional value of produced algae for animal feed. The cultures will be optimized to produce biomass at a high rate while also having the highest value composition for feed (in terms of lipids, digestibility, essential fatty and amino acid profiles, including balanced protein and carbohydrate concentrations). 3. Optimize pathogen inactivation methods. Pathogens will die-off in the ponds and during disinfection processing of the harvested biomass. Inactivation rates for representative pathogen indicators will be determined under various algae cultivation conditions and during trials with several biomass disinfection techniques. The optimal combination of pond conditions (e.g., high pH) and biomass processing (e.g., pasteurization) will be determined to achieve needed log inactivation of pathogens, which is typically 1- >4 log10 reduction (Sobsey et al., Available Online). 4. Quantify and control any cyanobacterial toxins. qPCR assays described by Al-Tarineh et al. (2012 a and b) will be used and optimized to reliably determine the copy number of cyanotoxin biosynthesis genes, as well as an internal cyanobacteria 16S rDNA control, in a single reaction. The latter detects for presence of cyanobacteria. If toxins are detected, measures will be taken to control invasion of the ponds by cyanotoxin-producing cyanobacteria strains. Overall Goal Benefit agriculture and the environment by introducing microalgae, a fast-growing livestock feed crop. |
Improving the Sustainability and Quality of Food and Dairy Products from Manufacturing to Consumption via Process Modeling and Edible Packaging | 0438139 | TOMASULA M M | 04/13/2020 | 11/30/2021 | COMPLETE | WYNDMOOR | Not applicable | 1: Integrate new processes into the Fluid Milk Process Model (FMPM) to determine the effects of reductions in energy use, water use or waste on commercial dairy plant economics and greenhouse gas emissions. 1a: Develop benchmark simulations for configurations of stirred, set and strained curd yogurt processing plants in the U.S. that quantify energy use, economics, and greenhouse gas emissions, validated using data from industry. 1b: Use process simulation for evaluation of possible alternatives of whey utilization for the strained curd method of yogurt manufacture. 2: Integrate properties of edible films and coatings from dairy and food processing wastes with formulation strategies to better target commercial food and nonfood applications. 2a: Investigate thermal and mechanical properties of dairy protein-based edible films and coatings in real-life storage and utilization conditions. 2b: Apply new property findings to the investigation of useful and/or sustainable applications utilizing edible milk protein films. 3: Investigate the effects of different film-making technologies to manipulate the physical and functional properties of films and coatings made from agricultural materials. 3a: Investigate the effect of protein conformation on the ability to electrospin caseinates in aqueous solution and in the presence of a polysaccharide. 3b: Investigate the use of fluid milk, nonfat dry milk and milk protein concentrates as a source for production of electrospun fibers. 3c: Investigate the effects of edible and non-edible additives to the electrospun polysaccharide-caseinate fibers in aqueous solution. 4. Investigate techniques for separating components of dairy waste to determine their potential as ingredients. [C1,PS1A] 5. Investigate technologies for large-scale production of the ingredients identified in Objective 4, with products targeted to food applications. [C1, PS1A]. |
Attaining High Quality Soft White Winter Wheat through Optimal Management of Nitrogen, Residue and Soil Microbes | 0435472 | REARDON C L | 09/06/2018 | 09/05/2023 | COMPLETE | PENDLETON | Not applicable | Obj. 1: Extend the N replacement approach to soft white winter wheat for guiding precision management of fertilizer N and crop residue to optimize soil microbial processes and maximize the biological potential of soil. 1A: Evaluate grain protein concentration and yield response to N under varying levels of water to define the critical protein level and fertilizer N equivalent to a unit change in protein for popular cultivars of soft white winter wheat. 1B: Determine whether uniformity of protein levels in the crop can be achieved with the precision N replacement approach. 1C: Adapt instruments and algorithms to support on-farm implementation of the N replacement approach to precision fertilizer management in dryland wheat production systems. 1D: Evaluate the effects of residue management (standing, distributed on the soil surface, or removed) on the plant-available N, precipitation capture efficiency, crop productivity, weed density, and microbial activity during the 13 months of fallow. Obj. 2: Identify whether soil microbial communities adapted to dry environments benefit plant fitness under water limited conditions. 2A: Identify the composition of microbial consortia naturally adapted to low water availability. 2B: Determine whether cultivar selection and N management can be manipulated to shift the structure and function of microbial communities to benefit plants under water stress. Obj. 3. Develop resilient cropping systems and strategies that increase resilience, improve economic returns, and enhance ecosystem services; assess their economic and environmental performance of various cropping systems in concert with their supporting components; and develop decision support systems for optimizing agronomic production in these cropping systems. 3A: Compare economic returns from the variable N replacement approach based on previous seasonâ¿¿s site-specific SWW crop yield data and conventional uniform N placement based on field bulk soil sampling and laboratory testing. 3B: Increase dryland farming resilience by developing cropping systems more intensive and diverse than the conventional winter wheat-fallow system. 3C: Investigate the yields and economic returns of alternative crops following winter wheat and winter wheat following cover crops across low and intermediate precipitation zones using current and future climate scenarios. Obj. 4. Increase the sustainability resilience and tolerance of the dryland crop production system to biotic and abiotic stressors through improved understanding of developmental, environmental, and management factors that limit plant health and growth, including but not limited to stress tolerance, water use efficiency, and disease resistance. 4A: Evaluate stress indicators and yield components of wheat in alternative cropping systems compared to wheat-fallow with relation to soil water availability, disease incidence, and rotational crop morphology. 4B: Investigate crop response to water deficit, high temperature, and/or nitrogen availability. |
Improvement of Soil Management Practices and Manure Treatment/Handling Systems of the Southern Coastal Plain | 0431207 | SZOGI A A | 07/27/2016 | 07/05/2021 | ACTIVE | FLORENCE | Not applicable | 1. Develop and test improved tillage and biomass management practices to enhance soil health and long-term agricultural productivity in the Southeastern Coastal Plain. 2. Develop manure treatment and handling systems that improve soil health and water quality while minimizing the emissions of greenhouse gases, odors and ammonia and the transport of phosphorus and pathogens. Subobjective 2a. Develop improved treatment systems and methods for ammonia and phosphorus recovery from liquid and solid wastes using gas-permeable membrane technology. Subobjective 2b. Develop improved biological treatment systems for liquid effluents and soils based on deammonification reaction using ARS patented bacterial anammox and high performance nitrifying sludge cultures. Subobjective 2c. Improve the ARS patented â¿¿Quick Washâ¿? process for phosphorus recovery. Subobjective 2d. Assess treatment methods for their ability to reduce or eliminate pathogens and cell-free, microbially-derived DNA from agricultural waste streams. Subobjective 2e. Improved manure treatment and handling systems, and management strategies for minimizing emissions. Subobjective 2f. Assess the impact of manure treatment and handling systems on agricultural ecosystem services for soil, water, and air quality conservation and protection. 3. Develop beneficial uses of agricultural, industrial, and municipal byproducts, including manure. Subobjective 3a. Evaluate application of designer biochars to soils to increase crop yields while improving soil health, increasing carbon sequestration, and reducing greenhouse gas emissions. Subobjective 3b. Develop methods and guidelines to remediate mine soils using designer biochars. Subobjective 3c. Evaluate the agronomic value of byproducts produced from emerging manure and municipal waste treatment technologies. |
Sorghum Biorefining: Integrated Processes for Converting all Sorghum Feedstock Components to Fuels and Co-Products | 0427783 | NGHIEM N P | 10/29/2014 | 10/28/2019 | ACTIVE | WYNDMOOR | Not applicable | 1: Develop technologies that enable the integrated processing of sorghum grains and sweet sorghum juice at existing biofuels production facilities and that enable the commercial production of new co-products at sorghum-based biorefineries. 1A: Develop technologies that enable the integrated processing of sorghum grains at existing biofuels production facilities. 1B: Develop technologies that enable the integrated processing of sweet sorghum juice at existing biofuels production facilities. 1C: Develop technologies that enable the commercial production of new co-products at sorghum-based biorefineries. 2: Develop technologies that enable the commercial production of marketable C5-rich and C6-rich sugar streams from sorghum lignocellulosic components. 2A: Develop technologies that enable the commercial production of marketable C5-rich sugar streams from sorghum lignocellulosic components. 2B: Develop technologies that enable the commercial production of marketable C6-rich sugar streams from sorghum lignocellulosic components. 3: Develop technologies that enable the commercial conversion of sorghum lignocellulosic components into fuels and industrial chemicals. 3A: Develop technologies that enable the commercial production of industrial chemicals from the C5-rich sugar stream obtained from the enzymatic hydrolysis of pretreated sorghum cellulosic components. 3B: Develop technologies that enable the commercial production of additional ethanol and industrial chemicals from the C6-rich sugar stream obtained from the enzymatic hydrolysis of the cellulose-enriched residue. 3C: Develop technologies that enable the use of byproducts and wastes generated in ethanol and other fermentation processes in the sorghum biorefinery for production of energy and chemicals. |
Enable New Marketable, Value-added Coproducts to Improve Biorefining Profitability | 0427684 | MOREAU R A | 09/08/2014 | 09/07/2019 | ACTIVE | WYNDMOOR | Not applicable | 1. Develop processes to fractionate sorghum and corn/sorghum oils into new commercially-viable coproducts. 2. Develop processes to fractionate grain-derived brans into new commercially-viable coproducts. 2a: Develop processes to fractionate grain-derived brans into new commercially-viable coproducts such as lipid-based coproducts and for other industrial uses such as extrusion or producing energy or fuel. 2b: Develop commercially-viable, value-added carbohydrate based co-products from sorghum brans and the brans derived from other grains during their biorefinery process. 3. Develop processes to fractionate biorefinery-derived celluloses and hemicelluloses into new commercially-viable coproducts. 3a: Develop commercially-viable, value-added hemicellulose based co-products from sorghum biomass, sorghum bagasse and other agricultural based biomasses produced during their biorefining. 3b: Develop commercially-viable, value-added cellulose based co-products from sorghum biomass, sorghum bagasse and other agricultural based biomasses produced during their biorefining. 4. Develop technologies that enhance biodiesel quality so as to enable greater market supply and demand for biodiesel fuels and >B5 blends in particular. 4a: Improve the low temperature operability of biodiesel by chemical modification of the branched-chain fatty acids. 4b: Develop technologies that significantly reduce quality-related limitations to market growth of biodiesel produced from trap and float greases. 4c: Further develop direct (in situ) biodiesel production so as to enable its commercial deployment. 5. Develop technologies that enable the commercial production of new products and coproducts at lipid-based biorefineries. 5a: Enable the commercial production of alkyl-branched from agricultural products and food-wastes. 5b: Enable the commercial production of aryl-branched fatty acids produced from a combination of lipids and natural antimicrobials possessing phenol functionalities. |
Technologies for Improving Industrial Biorefineries that Produce Marketable Biobased Products | 0427427 | ORTS W J | 10/01/2014 | 09/30/2019 | COMPLETE | ALBANY | Not applicable | This project provides technological solutions to the biofuels industry to help the U.S. meet its Congressionally mandated goal of doubling advanced biofuels production within the next decade. The overall goal is to develop optimal strategies for converting agricultural biomass to biofuels and to create value-added products (bioproducts) that improve the economics of biorefining processes. Specific emphasis is to develop strategies for biorefineries located in the Western United States by using regionally-specific feedstocks and crops, including sorghum, almond byproducts, citrus juicing wastes, pomace, municipal solid wastes (MSW), and food processing wastes. These feedstocks will be converted into biofuels, bioenergy and fine chemicals. Objective 1: Develop commercially-viable technologies for converting agriculturally-derived biomass, crop residues, biogas, and underutilized waste streams into marketable chemicals. Research on converting biogas will involve significant collaboration with one or more industrial partners. Sub-objective 1A: Provide data and process models for integrated biorefineries that utilize sorghum and available solid waste to produce ethanol, biogas and commercially-viable coproducts. Sub-objective 1B. Convert biogas from biorefining processes into polyhydroxyalkanoate plastics. Sub-objective 1C: Apply the latest tools in immobilized enzymes, nano-assemblies, to convert biomass to fermentable sugars, formaldehyde, and other fine chemicals. Objective 2: Develop commercially-viable fractionation, separation, de-construction, recovery and conversion technologies that enable the production of marketable products and co-products from the byproducts of large-scale food production and processing. Sub-objective 2A: Add value to almond byproducts. Sub-objective 2B: Apply bioenegineering of bacteria and yeast to produce diacids, ascorbic acid and other value-added products from pectin-rich citrus peel waste. Sub-objective 2C: Convert biomass into commercially-viable designer oligosaccharides using combinatorial enzyme technology. |
Developing Technologies that Enable Growth and Profitability in the Commercial Conversion of Sugarcane, Sweet Sorghum, and Energy Beets into Sugar, Advanced Biofuels, and Bioproducts | 0426599 | KLASSON K T | 09/22/2014 | 09/02/2019 | ACTIVE | New Orleans | Not applicable | The overall objective of this project is to enhance the value of sugarcane, sweet sorghum, and energy beets, and their major commercial products sugar, biofuel and bioproducts, by improving postharvest quality and processing. Specific objectives are: 1. Develop commercially-viable technologies that reduce or eliminate undesirable effects of starch and color on sugar processing/refining efficiency and end-product quality. 2. Develop commercially-viable technologies that reduce or eliminate undesirable effects of high viscosity on sugar processing/refining efficiency and end-product quality. 3. Develop commercially-viable technologies to increase the stability and lengthen storage of sugar feedstocks for the manufacture of sugars, advanced biofuels, and bioproducts. 4. Develop commercially-viable technologies for the biorefining of sugar crop feedstocks into advanced biofuels and bioproducts. 5. Identify and characterize field sugar crop quality traits that affect sugar crop refining/biorefining efficiency and end-product quality, and collaborate with plant breeders in the development of new cultivars/hybrids to optimize desirable quality traits. 6. Develop, in collaboration with commercial partners, technologies to improve the efficiency and profitability of U.S. sugar manufacturing and enable the commercial production of marketable products from residues (e.g. , bagasse, trash) and by-product streams (e.g., low purity juices) associated with postharvest sugar crop processing. Please see Project Plan for all listed Sub-objectives. |
Integration of Site-Specific Crop Production Practices and Industrial and Animal Agricultural Byproducts to Improve Agricultural Competitiveness and Sustainability | 0425032 | JENKINS J N | 10/01/2013 | 09/30/2018 | ACTIVE | MISSISSIPPI STATE | Not applicable | Obj 1. Develop ecological and sustainable site-specific agriculture systems, for cotton, corn, wheat, and soybean rotations. 1: Geographical coordinates constitutes necessary and sufficient cornerstone required to define, develop and implement ecological/sustainable agricultural systems. 2: Develop methods of variable-rate manure application based on soil organic matter (SOM), apparent electrical conductivity, elevation, or crop yield maps. 3: Relate SOM, electrical conductivity, and elevation. Obj 2. Develop sustainable and scalable practices for site-specific integration of animal agriculture byproducts to improve food, feed, fiber, and feedstock production systems. 1: Quantify effects of management on sustainability for sweet potato. 2: Balance soil phosphorus (P)/micro¿nutrients using broiler litter/flue gas desulfurization (FGD) gypsum. 3: Effects of site-specific broiler litter applications. 4: Manure application/crop management practices in southern U.S. 5: Compare banded/broadcast litter applications in corn. 6: Develop reflectance algorithms for potassium in wheat. 7: Determine swine mortality compost value in small farm vegetable production. Obj 3. Analyze the economics of production practices for site-specific integration of animal agriculture byproducts to identify practices that are economically sustainable, scalable, and that increase competitiveness and profitability of production systems. 1: Evaluate economics of on-farm resource utilization in the south. Obj 4. Determine the environmental effects in soil, water, and air from site-specific integration of animal agricultural and industrial byproducts into production practices to estimate risks and benefits from byproduct nutrients, microbes, and management practices. 1: Quantitatively determine bioaerosol transport. 2: Role of P and nitrogen (N) immobilizing agents in corn production. 3: Assess impact of management on water sources. 4: Impact of FGD gypsum/rainfall on mobilization of organic carbon/veterinary pharmaceutical compounds in runoff/leached water. 5: Assess soil microbial ecology, antibiotic resistance, and pathogen changes using manure and industrial byproducts in crop production systems. 6: Develop nutrient management practices for sustainable crop production. 7: Develop nutrient management practices for reclaimed coal mine soils. 8: Determine effects of poultry litter/swine lagoon effluent in swine mortality composts. 9: Determine survival of fecal bacterial pathogens on contaminated plant tissue. 10: Identify agricultural/industrial byproducts that modify the breakdown of organic matter. Obj 5. Integrate research data into regional and national databases and statistical models to improve competitiveness and sustainability of farming practices. 1: Develop broiler house emission models. 2: Apply quantitative microbial risk assessment models to animal agriculture/anthropogenic activities. Obj 6. Develop statistical approaches to integrate and analyze large and diverse spatial and temporal geo-referenced data sets derived from crop production systems that include ecological and natural resource based inputs. 1: Develop novel methods of imaging processing. |
CONTROL OF HUMAN PATHOGENS ASSOCIATED WITH ACIDIFIED PRODUCE FOODS | 0420825 | BREIDT F | 12/02/2010 | 10/27/2015 | COMPLETE | RALEIGH | Not applicable | 1. To define conditions to assure a 5 log reduction of acid tolerant pathogens in refrigerated or bulk stored acidified vegetables. 2. To determine how the metabolism of Escherichia coli O157:H7 (internal pH, membrane potential, ion concentrations, and cell metabolites) are affected as cells are exposed to organic acid and salt conditions typical of acidified foods. 3. To determine the survival of E. coli O157:H7 in commercial fermentation brines, with and without competing microflora, and under a variety of extrinsic and intrinsic conditions. |
ECOLOGY, MANAGEMENT AND ENVIRONMENTAL IMPACT OF WEEDY AND INVASIVE PLANT SPECIES IN A CHANGING CLIMATE | 0420487 | DAVIS A S | 10/01/2010 | 09/30/2015 | COMPLETE | Urbana | Not applicable | Objective 1: Measure effects of management, climate, and soil conditions on microbial processes (herbicide degradation, nitrogen cycling, and weed seedbank dynamics) in corn/soybean ecosystems. Objective 2: Evaluate the effects of management and climate change on the biology and ecology of weedy and invasive species, including potential weedy cellulosic bioenergy crops, in Midwestern cropping systems. Objective 3: Identify effective combinations of weed management components through application of both new and existing knowledge that exploit useful plant and environmental interactions in vegetable cropping systems. |
Efficient Management and Use of Animal Manure to Protect Human Health and Environmental Quality | 0420394 | SISTANI K R | 10/01/2010 | 09/30/2015 | COMPLETE | BOWLING GREEN | Not applicable | The overall goal of the research project which is formulated as a real partnership between ARS and Western Kentucky University (WKU) is to conduct cost effective and problem solving research associated with animal waste management. The research will evaluate management practices and treatment strategies that protect water quality, reduce atmospheric emissions, and control pathogens at the animal production facilities, manure storage areas, and field application sites, particularly for the karst topography. This Project Plan is a unique situation in the sense that non-ARS scientists from WKU are included on an in-house project to conduct research under the NP 214. The objectives and related specific sub-objectives for the next 5 years are organized according to the Components (Nutrient, Emission, Pathogen, and Byproduct) of the NP 214, which mostly apply to this project as follows: 1) develop improved best management practices, application technologies, and decision support systems for poultry and livestock manure used in crop production; 2) develop methods to identify and quantify emissions, from poultry, dairy and swine rearing operations and manure applied lands; 3) reduce ammonia, odors, microorganisms and particulate emissions from dairy, swine and poultry operations through the use of treatment systems (e.g. biofilters and scrubbers) and innovative management practices; 4) perform runoff and leaching experiments on a variety of soils amended with dairy, swine, or poultry manures infected with Campylobacter jejuni (C. jejuni), Salmonella sp. or Mycobacterium avium subsp. paratuberculosis (MAP) and compare observed transport with that observed for common indicator organisms such as E. coli, enterococci, and Bacteriodes; and 5) use molecular-based methodologies to quantify the occurrence of pathogens and evaluate new methods to inhibit their survival and transport in soil, water, and waste treatment systems. |
Innovative Bioresource Management Technologies for Enhanced Environmental Quality and Value Optimization | 0420348 | SZOGI A A | 10/01/2010 | 09/30/2015 | COMPLETE | FLORENCE | Not applicable | 1. Develop improved treatment technologies to better manage manure from swine, poultry and dairy operations to reduce releases to the environment of odors, pathogens, ammonia, and greenhouse gases as well as to maximize nutrient recovery. 2. Develop renewable energy via thermochemical technologies and practices for improved conversion of manure into heat, power, biofuels, and biochars. 3. Develop guidelines to minimize nitrous oxide emissions from poultry and swine manure-impacted riparian buffers and treatment wetlands. 4. Develop beneficial uses of manure treatment technology byproducts. |
BIOLOGICAL TREATMENT OF MANURE AND ORGANIC RESIDUALS TO CAPTURE NUTRIENTS AND TRANSFORM CONTAMINANTS | 0420063 | MULBRY III W W | 04/03/2010 | 04/02/2015 | COMPLETE | BELTSVILLE | Not applicable | Development and evaluation of manure treatment systems. Specific objectives: (1) Develop treatment technologies and management practices to reduce the concentrations of pharmaceutically active compounds (antibiotics and natural hormones) in manures, litters, and biosolids utilized in agricultural settings; (2) Develop management practices and technologies to minimize greenhouse gas (GHG) emissions from manure and litter storage and from composting operations by manipulating the biological, chemical, and physical processes influencing production and release of ammonia and greenhouse gases during composting; (3) Develop technology and management practices that improve the economics and treatment efficiency of anaerobic digestion of animal manures and other organic feedstocks (e.g. food wastes, crops/residues) for waste treatment and energy production. |
METABOLIC VARIABLES AFFECTING THE EFFICACY, SAFETY, AND FATE OF AGRICULTURAL CHEMICALS | 0410345 | SMITH D J | 02/03/2006 | 02/02/2011 | COMPLETE | FARGO | Not applicable | Objective 1: Determine metabolic variables (rates of absorption, tissue and microbial biotransformation, excretion) that positively or negatively influence the practical use of novel pre-harvest food safety chemicals in food animals. Objective 2: Determine the fate of endogenous animal hormones, novel pre-harvest food safety compounds, and antibiotics in animal wastes, including their transport through soil and water, and develop intervention strategies that reduce their environmental impact. Objective 3: Develop sensitive and accurate analytical tools to rapidly detect and quantify agriculturally important chemicals studied under objectives 1 and 2. |
INNOVATIVE ANIMAL MANURE TREATMENT TECHNOLOGIES FOR ENHANCED ENVIRONMENTAL QUALITY | 0409671 | SZOGI A A | 04/03/2005 | 04/02/2010 | COMPLETE | FLORENCE | Not applicable | Develop and evaluate environmentally superior technologies to prevent off-farm release of nutrients and to reduce pathogens, odors, and ammonia emissions. Develop information and technologies to enhance or retrofit existing manure treatment systems to help producers meet environmental criteria (nutrients, emissions, and pathogens). Improve and refine constructed natural treatment technologies to effectively manage nutrients including reducing emissions of ammonia and nitrous oxide. Develop and evaluate new and improved technologies that concentrate/sequester nutrients from manures or create value added products including conversion of livestock waste to energy. Evaluate swine wastewater treatment systems that can be used to reduce emissions, manage nutrients, and control pathogens on small farms. Develop cooperative activities as needed to conduct the research. |
VALUE-ADDED PRODUCTS FROM FORAGES AND BIOMASS ENERGY CROPS | 0408533 | WEIMER P J | 06/04/2004 | 06/03/2009 | COMPLETE | MADISON | Not applicable | 1. Develop harvesting, fractionation and storage processes for forages and bioenergy crops that are economical, and that retain product quality. 2. Identify specific varieties of energy crops that display maximum fermentability when grown at specific locations under defined environmental conditions. 3. Develop switchgrass germplasm having broad adaptation to the northern USA and improved fermentability for conversion to value-added products. 4. Develop and improve fermentations for direct bioconversion of cellulosic biomass to value-added products (viz., ethanol, chemical feedstocks and novel bioadhesive components). |
DEVELOPMENT OF NEW GENERATION LOW-COST TREATMENT OF AMMONIA TO BENEFIT THE ENVIRONMENT AND PROMOTE SUSTAINABLE LIVESTOCK PRODUCTION | 0408509 | VANOTTI M B | 10/01/2004 | 09/30/2007 | COMPLETE | FLORENCE | Not applicable | This project will be conducted to develop new generation, low-cost treatment of animal wastewater based on applications of newly discovered microbial transformations and materials science. The project will involve cooperative work between USDA-ARS and EMBRAPA, Brazil's agricultural research organization, under the Scientific Cooperation Research Program of USDA-Foreign Agricultural Service. Investigators in both countries will conduct research to develop treatment systems based on energy-efficient anaerobic ammonium oxidation (ANAMMOX) process and immobilization technology. The new generation bio-treatment system has the potential to reduce more than four times the operational cost of treatment. Affordable treatment technology will promote sustainable swine production in concentrated areas such as North Carolina and Santa Catalina (Brazil) and help improve the quality of life. |
BIOPROCESS AND METABOLIC ENGINEERING TECHNOLOGIES FOR BIOFUELS AND VALUE-ADDED COPRODUCTS | 0403945 | DIEN B S | 12/15/2000 | 08/08/2004 | COMPLETE | PEORIA | Not applicable | Develop pretreatment, enzyme, and fermentation technologies for the conversion of corn fiber and other agricultural substrates into biofuels (e.g., ethanol, butanol) and value-added fermentation products (e.g., enzymes, polysaccharides, lactic acid). |
VALUE-ADDED PRODUCTS FROM PLANT MATERIALS | 0402375 | WEIMER P J | 10/01/1999 | 06/02/2004 | COMPLETE | MADISON | Not applicable | 1. Develop methods for harvesting forages and other cellulosic materials that retain feedstock qualtiy. 2. Develop methods to assess the energy feedstock quality of herbaceous biomass crops. 3. Develop low-cost, user-friendly assessment and processing technologies for biomass producers and processors. 4. Develop varieties of switchgrass adapted to the northern USA. 5. Develop technologies for processing and converting biomass materials to value-added products, including fuels, industrial chemicals, and enzymes. |
Microbial Processes for Bioproducts and Biofuels Production | 0231133 | Liu, Yan | 09/01/2012 | 08/31/2017 | COMPLETE | EAST LANSING | Biobased fuels and chemicals can make important contributions to U.S. energy security, rural economic development, and the environment. Heterotrophic conversion of organic substances (fungi and bacteria) and autotrophic conversion of inorganic compounds (algae and cyanobacteria) are two major microbial systems to produce these biofuels and chemicals. Numerous studies have been conducted in the past several decades. However, significant challenges still exist in successful realization of these microbial processes for biofuels and chemical production The recalcitrant structure of organic substances (lignocellulosic materials), dispersed nature of energy crops and agricultural residues, and limited capacity of current available industrial strains to co-utilize C5 and C6 sugars, are main barriers for heterotrophic conversion; while, long-term system stability, water and nutrient requirements, and harvesting of biomass hurdle autotrophic conversion. Addressing these challenges should be of the highest research priority in order to develop next-generation biofuels and chemicals. In response to researching and developing new routes towards effective and sustainable biofuels/chemical production systems, my research foci are mainly on heterotrophic fungal platform and autotrophic algal platform. Studies on the fungal platform include fungal cellulosic enzyme production, fungal biojet conversion, and fungi-based pesticides production, and studies on the algal platform include mixture culture of algal assemblage for lipid accumulation and water reclamation, and transgenic algal strains for pharmaceutical/neutraceutical production. The outcomes of the proposed research will lead to novel bioprocesses for biofuel/chemical production with minimum water/nutrient/energy consumption. The implementation of these processes will create great economic value for the agricultural industry, and further stimulate job creation, farm profit, and rural development. | The long-term research goal is to develop environmentally benign bioprocesses to effectively utilize various renewable resources (crop residues, animal wastes, industrial organic wastes and carbon dioxide) for value-added energy/chemical production, with a specific aim towards making scientific and technological advances to meet demands of the emerging bioeconomy. The objective of the proposed research is to demonstrate novel fuel/chemical production systems that apply advanced fungal and algal cultivation technologies to produce enzymes, lipids, biopesticides from agricultural/industrial wastes. The objective will be achieved by pursuing following specific aims under fungal and algal platforms in five years. Specific Aims for Fungal Platform: 1. Investigating enzyme production using pelletized fungal culture; 2. Enhancing lipid accumulation in fungal biomass; 3. Enhancing biopesticide (chitosan) production from fungal cultivation. Specific Aims for Algal Platform: 1. Constructing algal/bacterial consortium to improve lipid accumulation and facilitate biomass precipitation; 2. Developing a culture strategy to enhance lipid/starch accumulation; 3. Developing transgenic algal culture for biofuels and value-added protein production. The expected outputs from the project include: 1. Peer reviewed articles and book chapters Publishing peer reviewed journal articles on those high-impact journals in the biofuels/chemical field is one of the best approaches to disseminate the research outcomes in relevant scientific communities. 2. Workshops Smaller groups of targeted parties from both academia and industries with much higher and more active engagement on specific research topics (algal or fungal related) will be invited to MSU campus. Research presentation, group discussion, system demonstration, and facility tour will be organized for the workshops to give the audience the first-hand information, and let them better understand the outcomes of the on-going biofuel/chemical research. 3. Media Potential media for biofuel/chemical research are Discovery Channel, Lansing State Journal, Biomass Products & Technology, Resource - Engineering & Technology for Sustainable World etc. 4. Industrial partners Collaborating with industrial and agricultural partnerships will enable applied and relevant research to be quickly commercialized. Considering the intellectual merits related with some of the proposed research, MSU technologies will be invited to be part of the conversation with the partners to protect potential intellectual properties. 5. Internet The research group website will be upgraded to include a dynamic web-based database. All updated research news and outcomes, educational and training materials will be updated in a timely manner. A much larger audience from different area such as agriculture, food/pharmaceutical/biofuels industries, K-16 educators, and general public will be targeted by the internet dissemination approach. |
Bioenergy and Biofuels Production from Lignocellulosic Biomass via Anaerobic Digestion and Fisher-Tropsch Reaction | 0231118 | Zhao, Lingying | 09/01/2012 | 08/31/2017 | COMPLETE | Columbus | Integrated anaerobic digestion system (iADs) is an Ohio State University (OSU) patent technology (WO/2011/020000) that combines solid state anaerobic digestion (SS-AD) with commercially available liquid anaerobic digestion (L-AD). This combination mitigates technical challenges associated with each alone, and creates synergistic benefits that reduce cost, improve efficiency, and increase biogas production from a wide range of feedstocks. The biogas in turn is converted into bioenergy and biofuels, while the SS-AD digestate can be used to enhance soil quality (closing an ecological loop). Here, we propose to optimize the SS-AD technology for biogas production from lignocellulosic biomass; develop the upstream and downstream logistics around the iADs; and assess the potential environmental, economic, and social benefits of iADs. Pilot scale SS-AD tests with different feedstocks will be performed to validate the lab scale results and provide the critical data necessary to convince our industrial collaborators to move this technology into the next stage of commercialization, namely, the demonstration phase (which is beyond the scope of this grant). To achieve the objectives of the proposal, we have assembled a multidisciplinary team of scientists in the areas of soil and carbon sequestration (Dr. Rattan Lal, OSU), feedstock supply logistics (Dr. Scott Shearer, OSU), feedstock logistics and process modeling (Dr. Sudhagar Mani, University of Georgia (UGA)), anaerobic digestion (Dr. Yebo Li, OSU), anaerobic biology (Dr. Z. T. Yu, OSU), catalyst synthesis (Dr. Fei Yu, Mississippi State University (MSU)), and LCA (Bhavik Bakshi, OSU). The team will work closely with industry collaborators including quasar energy group (quasar), American Electric Power (AEP), Aloterra Energy, Marathon, CNH, AgSTAR and others on this project. The outcomes of the proposed project include: (1) optimization of novel iADs technology using effluent of L-AD as inoculum and nitrogen source for SS-AD, with increased knowledge about the microbiome in the SS-AD process; (2) miscanthus and crop production with SS-AD digestate that leverages BCAP-funded Miscanthus production for development of Miscanthus feedstock logistics (planting, harvesting and storage systems); (3) restoration and soil quality enhancement of marginalized lands; (4) assessment of the carbon sequestration in soils, trees and wetlands, and of the magnitude by which gaseous emissions in biofuel production process can be off-set by net gains in the ecosystem carbon pool; (5) A flexible platform system for exploring innovative uses of AD products including testing the techno-economic feasibility of production of liquid hydrocarbon fuels from biogas; (6) Positive economic, environmental, and social impact of iADs. The impacts of the project include: (1) extension of the feedstocks of AD from animal manure to all kinds of organic waste; (2) production of liquid transportation fuels production from organic waste; (3) assessment of the net ecosystem carbon budget in biofuel production. | The long term goal of this project is to commercialize an integrated anaerobic digestion system (iADs) that promises cost competitive bioenergy and biofuels production from lignocellulosic biomass. The specific objectives of this proposal are to: (1)Develop a sustainable production and supply logistics system to provide multiple feedstocks to iADs for bioenergy and biofuels production; (2) Assess impacts of SS-AD digestate application to biofuel crops grown in marginal lands on soil quality and hydrological, microclimatic, and agronomic parameters; (3) Develop a pretreatment technology to increase lignocellulosic biomass digestibility and optimize SS-AD technologies to maximize biogas production; (4)Integrate feedstock supply chains with a pilot scale iADs to evaluate its potential for commercialization; (5) Develop a biogas to liquid hydrocarbon fuels (BTL) technology via catalytic reforming and Fisher-Tropsch (F-T) synthesis; (6) Use Life Cycle Assessment (LCA) and process economic models to evaluate the proposed system performance and its environmental, economic, and social impacts on sustainability. |
Accelerated Renewable Energy | 0228524 | MARKLEY, JOHN | 07/15/2012 | 07/14/2017 | COMPLETE | MADISON | A dairy with 1,700 cows produces 15 tons of manure per day. To handle the manure, the dairy must recycle 2.5 million gallons of water per day. The conventional solutions to these problems are wash the manure into a lagoon, dredge and manure solids and haul them to fields. Manure on the fields may not provide the correct nutrients and is subject to running off and polluting rivers. Our goal is to demonstrate the economic feasibility on the scale of a large dairy farm (1,700) cows of converting the manure produced into valuable commodities including methane gas for heating purposes in the farm, fuel ethanol, and custom fertilizer. Part of the farm acreage (5%) will be devoted to oilseed production, which will be converted to biodiesel to power vehicles on the farm. Our approach utilizes biomass processing technology developed by a small Wisconsin business (Soil Net) and engineering and fabrication expertise of another small Wisconsin business (Braun Electric). We foresee a strong potential for commercialization of this technology and its widespread adoption. | We propose a public (University of Wisconsin-Madison) and private (Cottonwood Dairy; Soil Net, LLC; Braun Electric; Resource Engineering Associates, Inc.) collaboration that encompasses both R&D and prototypical farm-based demonstration of the four components of the BRDI FOA: 1. Feedstocks Development: The bioenergy generated will derive primarily from recycled cellulosic components of dairy manure, which have minimal food/fuel issues. 2. Bio-Fuels and Bio-based Products Development: The project will demonstrate/evaluate multiple sub-processes and associated "value added" bio-based co-products -- vegetable oil/meal; oil/biodiesel; cellulosic ethanol; bio-gas/manure digestion; recycled rinse water; low and high P (phosphorus) crop nutrients; and multiple cellulosic manure fiber "fractions" (for mulches, bedding, etc.). 3. Bio-Fuels and Bio-based Products Development Analysis: The project will evaluate (calibrate, implement, validate) economic, environmental, lifecycle, process efficiency, and mass balance analysis and incorporate these into a business decision/management framework. In particular, an analysis of the economics of scale of the various system components will form a major part of the research effort. 4. Use of Oil/Biodiesel for the Production of Grain or Cellulosic Ethanol: The proposed system will be capable of producing oil/biodiesel from vegetable oil seed produced on the farm. Our research will determine the economic benefits of biodiesel vs. purified vegetable oil for direct use in operating farm vehicles and machinery. The expected outcome is the demonstration of cost effective livestock manure separation and processing to produce bio-energy, bio-feedstocks, and value added co-products (mulch/fertilizers) for on-farm and off-farm ("export") markets that can be carried out at a variety of large/medium/small scales. This technology will provide opportunities to exploit readily available, relatively low value potential cellulosic bio-feedstocks-ones that largely avoid food/fuel concerns-to improve economic sustainability: on-farm substitution for purchased energy and feed/fertilizer nutrients or as potential farm revenue diversification; improve environmental sustainability. The approach will reduce GHG/carbon footprint, soil/nutrient losses, and potential manure borne pathogens; and, improve regional economic development. We have shown that a demand exists for many of the manure fiber (mulch/fertilizer) co-products. The flexibility to adopt one (or several) of process/flow components, sequentially, based on the specifics of extant farm infrastructure (manure type/volumes, manure handling/processing, etc.) increases the proposed project's commercialization potential. The extensive process/flow measurement and analysis R&D, at both lab/bench and commercial scale, will provide the analytic/measurement tools to evaluate the economic, environmental, food safety, and regional economic development impacts of this potential commercialization at a variety of resolutions (farm, county, region). |
Molecular Mechanisms for the Maintenance of Photosynthesis | 0211674 | Melis, A | 10/01/2007 | 09/30/2012 | COMPLETE | BERKELEY | Project investigates and elucidates the mechanism of a fundamental repair process in plants. This repair process is essential for the maintenance of photosynthesis in chloroplasts and, therefore, it impacts plant growth and productivity. | The goal of the research is elucidation of the mechanism of a chloroplast repair process that maintains the activity of photosynthesis in all plants. A frequent and irreversible photo-oxidative damage in photosystem-II (PSII) of chloroplasts has the potential of limiting photosynthesis and causing losses in plant growth and productivity. The repair process rectifies this adverse effect by selectively removing and replacing the inactivated D1 reaction center protein from the multi-subunit H2O-oxidizing and O2-evolving PSII holocomplex. This repair is unique in the annals of biology; nothing analogous in complexity and specificity has been reported in other systems. The research employs genetic, molecular and biochemical approaches by which to identify genes, proteins and enzymatic steps of the PSII repair process. Current objectives of the research include: (1) Biochemical analysis of REP27, a recently discovered nuclear-encoded and chloroplast-localized
tetratricopeptide repeat protein, which functions in the D1 turnover of the repair mechanism. (2) Molecular and biochemical analysis of rep5, a repair-aberrant DNA insertional mutagenesis transformant in the model organism Chlamydomonas reinhardtii. Plasmid insertion interrupted the promoter region of a putative CSN6 gene in this repair-aberrant strain, potentially impairing transcription and/or translation of the CSN6 protein. The research will complete the molecular and functional analysis of the rep5 mutant, addressing the putative role of the CSN6 gene in the repair process. (3) Molecular analysis of rep16, a repair-aberrant mutant that over-accumulates inactive D1. ORFs encoding proteins of unknown function have been deleted upon plasmid insertion in this mutant. Complementation approaches will help identify the gene and protein responsible for this repair-aberrant phenotype. (4) Analysis of the configuration of a recently identified chloroplast repair intermediate and
elucidation of the role(s) played in this complex by REP27, ELIP/Cbr, and of the HSP70B proteins. In summary, the proposed research focuses on characterization of a specific biochemical process and pathway, which impacts plant productivity and fitness. The research will generate fundamental knowledge on genes, enzymes and pathways involved in the repair of chloroplasts in all plants, while addressing a significant fundamental problem in agricultural plant biology using biochemical and molecular genetic approaches. Elucidation of the repair mechanism is beginning to reveal the occurrence of hitherto unknown regulatory and catalytic reactions for the selective in situ replacement of specific proteins from within multi-protein complexes. This may have important and unforeseen applications in agriculture, medicine and other fields. In agriculture, alleviation of the rate-limiting step of the repair process may prevent photoinhibition of photosynthesis and thus permit greater rates of
plant growth and productivity. In medicine, the chloroplast repair process offers the possibility of hitherto unknown molecular surgery, entailing the selective in situ replacement of specific proteins. |
Bacterial Methylation of Mine-Derived Inorganic Mercury in Lake and Estuarine Sediments | 0201896 | Nelson, D | 10/01/2009 | 09/30/2014 | COMPLETE | DAVIS | California's legacy of inorganic mercury pollution from abandoned mines is of concern due to its potential conversion to methylmercury. Bacteria living in oxygen-depleted sediments produce this especially toxic form of mercury, which is readily biomagnified in predatory fish and birds near the apex of aquatic food webs. We have recently shown that a group called "iron-reducing bacteria" are as active at producing methylmercury as other bacteria, called "sulfate-reducers", which were previously believed to perform the bulk of these transformations in marine and freshwater sediments. The current proposal will continue to refine experiments based on natural sediments to determine the general importance of iron-reducers as mercury methylators throughout the sediments of a lake and an estuary impacted by typical mine-derived mercury. Pure cultures of abundant iron-reducing bacteria will also be isolated from mine-impacted marine sediments and assayed for their ability to produce methylmercury from the divalent inorganic form. A variety of stakeholder groups have been interested in our basic research findings on these and related topics to date. The PI will continue to keep these groups informed of our new findings and any possible implications for remediation actions. | The research objectives for this project are as follows: (1) For mine-impacted sediments of Clear Lake, determine the relative contribution of sulfate-reducing bacteria to methylation of mercury while altering native sediment properties and inorganic mercury levels as little as possible. (2) For mine-impacted sediments of Clear Lake that are first manipulated to biologically deplete sulfate and oxidized iron, determine the relative rates of mercury methylation upon supplementation with each biological oxidant separately and both together. (3) For mine-impacted sediments of Walker Creek Estuary and a control site, determine the proportional contribution of sulfate-reducing bacteria to methylation of mercury while altering native sediment properties and inorganic mercury levels as little as possible. (4) For a spectrum of sediment types from Walker Creek Estuary, isolate pure cultures of marine iron-oxidizing bacteria and test the per-cell rates of production of methylmercury for representative cultures. (5) Use bioaccumulation of methylmercury in the muscle tissue of the lined shore crab, PACHYGRAPSUS CRASSIPES, to determine the extent and magnitude of the impact of mercury from Walker Creek on biota around Tomales Bay; a site showing minimal impact will be selected as control sediment for the third objective. . Under the earlier version of this project the PI presented new basic research findings that have implications for mercury management policy to the following stakeholder groups: Delta Tributaries Mercury Council, San Francisco Estuary Institute, San Francisco Bay Water Board. These presentations, made in person or via dissemination of unpublished research findings, were in response to requests from these groups, and we will continue to disseminate our findings in this manner as they become available. Additionally, our report on our Walker Creek Estuary studies, which has been posted on the UC Office of the President Coastal Environmental Quality Initiative website (http://repositories.cdlib.org/ucmarine/ceqi/040), had 742 full-text downloads in the first 30 months of posting (2006-12-13) and continues to be downloaded at a steady pace. We will continue to present our findings at scientific meetings and in research journal articles. A recent peer-review of an earlier version of our pending manuscript on the Walker Creek Estuary studies characterized our 2006 publication (Fleming et al., 2006, Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology 72:457-464) as follows: "In this reviewer's opinion, that finding was one of the most significant advances in Hg biogeochemistry in recent years, because for over 20 years prior to the 2006 paper, SRB [sulfate-reducing bacteria] were the focus of all research on Hg methylation." Thus, we believe that our current basic research emphasis on establishing the generality of those earlier findings continues to have strong implications for environmental policy and remediation of contaminated sites. |